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Preface

Mastering a topic in physics generally includes solving a suitable set of problems,
either in tutorials and homework assignments or while preparing for an examina-
tion. Thermodynamics and statistical physics are no exception, although their
conceptual framework is seemingly simple, at least at the level of equilibrium
phenomena, and they are usually technically undemanding compared to, e.g.,
theory of elasticity or electromagnetism. Most standard textbooks on thermody-
namics and statistical physics do contain some problems that the readers can use to
consolidate their knowledge, but the dedicated solved-problems volumes address
the development of these specific skills in a more focused, hands-on, and com-
prehensive fashion. This book belongs to the latter category.

The material included is or has been used in the undergraduate course on sta-
tistical thermodynamics for students of physics at the University of Ljubljana. The
topics discussed cover the standard syllabus of most such courses from the equation
of state to the kinetic theory of gases, and elementary knowledge of classical and
quantum physics is sufficient to tackle most problems. With the selection of
problems, we wish to emphasize that the theoretical apparatus of thermodynamics
and statistical physics is quite universal and that it does not apply solely to pVT
systems best known from the typical general-physics course for freshmen. This is
why we often discuss electric, magnetic, and other non-pVT systems, equations of
state, etc., so as to offer readers the opportunity to recognize the universality by
themselves. At the same time, we put emphasis on examples from soft condensed
matter physics, touching upon the many instances where excluded-volume inter-
actions lead to interesting effects. (Here we must refer the interested reader to the
excellent Entropy Beyond the Second Law by Attard.) In several cases, we resort to
seemingly artificial problems, such as when discussing the two-dimensional Fermi
gas, because there exists an exact closed-form solution, which is well worth
deriving and examining. Some of the problems are actually case studies dealing
with selected special topics from different fields of physics. These include the
isothermal–isobaric ensemble, Tonks gas, Debye–Hückel theory of plasma,
Onsager theory of the nematic–isotropic transition, rubber elasticity, Flory
mean-field theory of polymers, transfer-matrix formalism in spin and polymer
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chains, renormalization group, lattice gas model, etc. A few systems are considered
repeatedly but from diverse perspectives: For example, the one-dimensional Ising
chain is analyzed using as many as four different approaches, and thermionic
emission is studied both within thermodynamics and statistical mechanics.

The book may be of interest primarily to undergraduate students of physics as
well as to their instructors, but it may also be helpful as a reference for a course of
chemical or engineering thermodynamics. Some of the 234 problems examined are
discussed in tutorials and others were developed for the open-notes/open-books style
examinations at the University of Ljubljana. Many were originally proposed in the
Slovenian-language textbook Toplota by Kuščer and Žumer, albeit without solu-
tions, and some are adapted from or inspired by other textbooks. Quite a few were
conceived by ourselves. The material contained in this book is intended to be used in
tutorials and for self-study, and the book itself is a companion text rather than a
self-contained, standalone volume as we did not include any introductory material to
review the main concepts in a given topic. When organizing the material into
chapters, we arranged the problems according to the main theme; in some cases, this
cannot be done unambiguously and hence some arbitrariness in the division.

Our book is hardly the only of its kind; some other references of various styles,
coverages, and levels of difficulty are listed at the end where we also mention a few
textbooks of interest. The book edited by Lim is a collection of problems from
entrance examinations at the universities in the US, which are generally designed to
test conceptual knowledge. Abbott–Van Ness’ volume of Schaum’s Outline is a nice,
engineering-oriented thermodynamics-only collection of solved problems. Kubo’s
classics combine an overview of the main concepts in each topic with problems that
span many levels of difficulty. Although not a collection of solved problems, Rumer–
Ryvkin’s textbook contains many illuminating case studies or worked examples.
Equally interesting as these established references are the more recent ones such as
the book by Cini, Fucito, and Sbragaglia. In our experience, no single resource
suffices by itself, and we strongly suggest consulting both those singled out in the list
of references as well as any related titles that we do not mention here.

The style of Solved Problems in Thermodynamics and Statistical Physics is
intentionally concise and the language is terse. In each solution, we describe all
of the main steps but the intermediate ones are left to the readers as an invitation;
we are convinced that by working them out, they will better understand the
material. Nonetheless, we include an interpretation of the physical phenomenon at
hand and references to related topics and problems in the book as appropriate. Most
problems ask for a numerical answer; still the emphasis is on concepts. Some
figures are included but, in many problems, the readers are expected to sketch one
by themselves. Often it is advantageous to consider a suitable simplification of the
exact result or a limiting case, which usually provides a physical insight. In some
problems, we complement the analytical approximation with the exact numerical
result so as to demonstrate how they compare to each other.

The text of problems is typeset in italic whereas the solutions are in upright font.
The symbols used are generally consistent with most modern textbooks on ther-
modynamics and statistical physics; unless stated otherwise, “specific” refers to the
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quantity in question per unit mass. As usual, the heat is positive if it is received by
the system and negative if it is emitted, and analogously for work. We use cali-
graphic fonts C to indicate reduced (i.e., dimensionless) quantities, the only
exception being F which is used for the magnitude of the force. Vectors and tensors
are in upright boldface font b and in sans-serif font S, respectively; except in one or
two instances, primed quantities such as U0 denote the initial state and unprimed
ones refer to the final state. Some textbooks use a special symbol such as đ to
indicate improper differentials; here we assume that readers know that heat and
work are not functions of state and that this need not be emphasized every time we
write the first and the second law. For conciseness, mathematical material is typeset
using the convention where implied multiplication has precedence over division so
that ab/cd stands for (ab)/(cd). We use the Système International (SI) units. For
conciseness, the index does not include the very frequent entries such as energy and
heat capacity at constant volume.

This book is largely a translation of two volumes that we wrote in Slovenian.
These volumes were reprinted several times before we started working on the
translation and we trust that we managed to remove the majority of errors; at this
point, we thank all students and colleagues who drew our attention to errors and
inconsistencies and helped us to fix them. It is possible that some of them remain
and we will appreciate the readers telling us about anything that should be corrected
or amended.

We appreciate the unfaltering support of the Faculty of Mathematics and
Physics, University of Ljubljana, and we thank our families for their encouragement
and understanding. We hope that the readers will like the Solved Problems as much
as we do—now that they are solved.

Ljubljana, Slovenia Gregor Skačej
Primož Ziherl
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Part I
Thermodynamics



Chapter 1
Equation of State

Problem 1.1.
Rewrite the van der Waals equation of state

(
p + a

V 2
M

)
(VM − b) = RT

in terms of reduced variables! Calculate the critical values of pressure pc, kilomolar
volume VMc, and temperature Tc!

At the critical point, one has (∂p/∂VM)T = 0 and
(
∂2 p/∂V 2

M

)
T = 0. By calcu-

lating the derivative of the van der Waals equation with respect to VM , we find that
the first condition reads pc − a/V 2

Mc + 2ab/V 3
Mc = 0. The second one reduces to

2a/V 3
Mc − 6ab/V 4

Mc = 0, which can be solved for VMc to give

VMc = 3b .

By inserting this result into the first derivative of the van der Waals equation, we
obtain

pc = a

27b2
,

and the equation of state itself then gives

Tc = 8a

27Rb
.

Now we introduce the reduced variables P = p/pc,V = VM/VMc, and T = T/Tc
so as to recast the van der Waals equation of state as

(
P + 3

V2

)
(3V − 1) = 8T .

© Springer Nature Switzerland AG 2019
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4 1 Equation of State

A few characteristic isotherms including a subcritical one featuring metastable states
and liquid–gas coexistence obtained using the Maxwell rule are shown in Fig. 1.1.

1

0

P

–1
0 1 3 4 52

V

1

0.8

T = 1.2
2

Fig. 1.1 Van der Waals fluid isotherms at T = 0.8, 1, and 1.2: The dashed line depicts metastable
states (superheated liquid and supercooled gas) whereas the dotted line shows unphysical states with
negative compressibility. The subcritical isotherm (T = 0.8) is cut into three sections according to
the Maxwell rule (see Problem 5.7): The steepest section corresponds to liquid state, the horizontal
to liquid–gas coexistence, and the remaining section to gas

Problem 1.2.
Find the lowest possible negative pressure in the van der Waals fluid!

By examining the isotherms we conclude that Pmin is observed at T = 0. Since
the van der Waals equation of state only allows states with V ≥ 1/3, we havePmin =
−27.

Problem 1.3.
Find the maximum superheating temperature of the van der Waals liquid at low
pressure!

Upon isobaric heating, metastable liquid states can be observed before reaching
the van der Waals isotherm that exhibits a minimum at the specified pressure. Con-
sequently, we search for the isotherm that has a minimum at zero pressure. We have
P = 8T / (3V − 1) − 3/V2 = 0 and (∂P/∂V)T = −24T /(3V − 1)2 + 6/V3 = 0.
These two conditions give V∗ = 2/3 and thus

T ∗ = 27

32
≈ 0.844 .

Problem 1.4.
What is the lowest temperature such that the van der Waals isotherm does not have
an inflection point?
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The inflection point is defined by (∂2P/∂V2)T = 144T /(3V − 1)3 − 18/V4 =
0, i.e., by 8T V4 − (3V − 1)3 = 0. This equation has no roots for

T > Tmax = max

(
(3V − 1)3

8V4

)
.

The function f (V) = (3V − 1)3/8V4 is positive for all V > 1/3, has a triple root at
V = 1/3, and decreases as 27/8V at large V (Fig. 1.2). The maximum of f (V) is
reached at V = 4/3, which corresponds to

Tmax = 2187

2048
≈ 1.068 .

Above Tmax, the isotherms are convex like in the ideal gas.

1

0.5

0
0 1 3 4 52

V

1.5f( )V T,

Tmax = 2187/2048

Fig. 1.2 Inflection points of the van der Waals isotherms: For T < Tmax = 2187/2048, there are
two such points whereas above Tmax there are none

Problem 1.5.
Find the isothermal compressibility and the volumetric thermal expansion coefficient
of the van der Waals gas!

The isothermal compressibility is

χT = − 1

V

(
∂V

∂p

)
T

= − 1

pcV

(
∂V
∂P

)
T

= 1

pc

(3V − 1)2V2

6(4T V3 − 9V2 + 6V − 1)

and the volumetric thermal expansion coefficient

β = 1

V

(
∂V

∂T

)
p

= 1

TcV

(
∂V
∂T

)
P

= 1

Tc

4(3V − 1)V2

3(4T V3 − 9V2 + 6V − 1)
.
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Both quantities diverge at the critical point where T = 1 and V = 1.

Problem 1.6.
Rewrite the critical van der Waals isotherm in a simplified form valid close to the
critical point!

We introduceP = 1 + X andV = 1 + Y , whereX andY � 1, andwe set T = 1
so that the van derWaals equation of state reads 1 + X + 3/(1 + Y)2 = 8/(2 + 3Y).
By substituting (1 + u)−1 by 1 − u + u2 − u3 + . . . and (1 + u)−2 by 1 − 2u +
3u2 − 4u3 + . . ., we obtain X = −3Y3/2 or

P − 1 = −3

2
(V − 1)3 .

Close to the critical point, the simplified isotherm agrees well with the exact one as
suggested by Fig. 1.3.

1.1

1

P

0.8
0.6 0.8 1.2 1.4

0.9

1
V

1.2

Fig. 1.3 Critical van der Waals isotherm: Approximate (dashed line) versus exact isotherm (solid
line)

Problem 1.7.
Rewrite the first Dieterici equation of state

p (VM − b) = RT exp

(
− a

RT VM

)

using reduced variables! Find the critical pressure, volume, and temperature!

Like in Problem 1.1, we arrive at VMc = 2b, pc = exp(−2)a/4b2, Tc = a/4Rb
and obtain
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1

0

P

–1
0 1 3 4 52

1

0.8

T = 1.2
2

V

Fig. 1.4 Dieterici isotherms (solid lines; plotted for T = 0.8, 1, and 1.2) are qualitatively similar
to the van der Waals isotherms (dashed lines)

P(2V − 1) = T exp

(
− 2

T V + 2

)
.

A few characteristic isotherms are shown in Fig. 1.4.

Problem 1.8.
Calculate the isothermal compressibility of fog!

Fog consists of saturated moist air and tiny yet visible water droplets, which
ensure that the air is saturated. We neglect the compressibility of droplets and write
p = pa + ps in agreement with Dalton’s law.

Here, pa and ps denote the partial pressures of dry air and water vapor, respec-
tively, and p is the total pressure. Air is treated as an ideal gas so that pa = p − ps =
maRT/MaV (where ma and Ma stand for the mass of dry air and kilomolar mass,
respectively, and V stands for the total volume), and from here it follows that
V = maRT/Ma(p − ps). Since ps only depends on temperature, we have

χT = − 1

V

(
∂V

∂p

)
T

= maRT

V Ma[p − ps(T )]2 = 1

p − ps(T )
.

The temperature dependence of the saturated water vapor pressure is given by
the Clausius–Clapeyron equation: dps/dT = psMwqv(T )/RT 2, where qv(T ) =
qv(T0) + �cp(T − T0) is the heat of vaporization and �cp = cgp − clp is the dif-
ference of heat capacities; here the superscripts refer to gas and liquid, respectively,
and Mw is the kilomolar mass of water. We also assumed that the density of vapor is
much smaller than that of liquid water. Finally, we obtain

ps(T ) = ps(T0) exp

(
−M

R

{[
qv(T0) − �cpT0

] (
1

T
− 1

T0

)
− �cp ln

T

T0

})
,
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where ps(T0) is the reference saturated vapor pressure. This expression can be sim-
plified to ps(T ) = ps(T0) exp

(−Mqv (1/T − 1/T0) /R
)
if the temperature range

considered is narrow enough and the temperature dependence of the heat of vapor-
ization qv is neglected.

Problem 1.9.
Find the isothermal Young modulus and the thermal expansion coefficient of a rub-
ber band! Its equation of state relates the applied force F to band length � and
temperature T , and is given by

F
A

= aT

{
�

�0
− [1 + σ(T − T0)]

(
�0

�

)2
}

,

where �0 denotes the band length at zero load and temperature T0, and A its cross
section, whereas a and σ are constants.

The Young modulus is equal to

ET = �

A

(
∂F
∂�

)
T

= aT

{
�

�0
+ 2 [1 + σ(T − T0)]

(
�0

�

)2
}

and the thermal expansion coefficient reads

α = 1

�

(
∂�

∂T

)
F

= 1

T

−�/�0 + [1 + σ(2T − T0)] (�0/�)
2

�/�0 + 2 [1 + σ(T − T0)] (�0/�)
2 .

For � = �0 and T = T0, one has α = σ/3.

Problem 1.10.
Estimate the electric dipole moment of a water molecule! The relative permittivity of
water vapor at 100 ◦C and 1 bar is equal to 1.0078,whereas the electric polarization
of vapor is given by

P = npe

(
coth

peE

kBT
− kBT

peE

)
,

where n is the number density of water molecules, pe is the dipole moment, E is the
electric field strength, and kB is the Boltzmann constant!

We focus on the behavior of water vapor in the linear regime, where P =
ε0(ε − 1)E , i.e., in a weak electric field. Then, we have peE/kBT � 1 and hence
coth (peE/kBT ) ≈ kBT/peE + peE/3kBT so that

P(T � peE/kB) ≈ np2e E

3kBT
.

In this regime, the susceptibility of water vapor is described by the Curie law χ =
ε − 1 = ε−1

0 (∂P/∂E)E=0 = np2e/3ε0kBT as illustrated in Figure 1.5.
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The molecular density can be estimated from the equation of state of ideal gas,
n = p/kBT , yielding

pe =
√
3χε0

p
kBT = 7.4 × 10−30 Asm .

0.8

0.4

0
0 1 3 4 5

0.2

2

1

0.6

P np/ e

k T p EB e/

Fig. 1.5 Temperature dependence of electric polarization in a rarefied gas of molecules carrying
permanent electric dipoles (solid line): At low temperatures the polarization is a linear function of
T , whereas at high temperatures it falls off as 1/T (Curie law; dashed line)

Note also that at low temperature, one obtains

P(T � peE/kB) ≈ npe

(
1 − kBT

peE

)
.

Problem 1.11.
Explore the temperature dependence of the magnetic susceptibility in a spin-1/2
ferromagnet just below the transition temperature! The average magnitude of the
projection of the magnetic dipole onto the external magnetic field is determined by

pz
pB

= tanh

(
pB
kBT

(
μ0H + z J

4pB

pz
pB

))
,

where pB = e0�/2me denotes the Bohr magneton, z is the number of nearest neigh-
bors in the crystal lattice, and J is the exchange integral. The ferromagnetic–
paramagnetic transition temperature is z J/4kB .

The equation of state is first rewritten in terms of reduced quantities:M = pz/pB
denotes the ratio of magnetization M at a given temperature and the saturated mag-
netization at T = 0, H = 4pBμ0H/z J is the reduced magnetic field strength, and
T = T/Tc (where Tc = z J/4kB) is the reduced temperature. In these units, the
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ferromagnetic–paramagnetic transition is at T = 1 and the above equation of state
reads

M = tanh
H + M

T .

Wewould like to find themagnetic susceptibility χ = (∂M/∂H)T in a weak external
field and just below the transition temperature (i.e., at H → 0 and T → 1) where
magnetization is small. By expanding tanh u ≈ u − u3/3 + . . ., we have

M ≈ H + M
T − (H + M)3

3T 3
.

Thus, in absence of external field the equilibrium magnetization equalsM(T ,H =
0) = √

3T 2(1 − T ). To obtain themagnetic susceptibility, we differentiate the above
equation. In the limit of H = 0, we have

dM ≈ dH
T + dM

T − M2

T 3
dH − M2

T 3
dM .

In this case, χ ∝ (∂M/∂H)T = (
T 2 − M2

)
/
(
T 3 − T 2 + M2

)
. Upon inserting

M2 = 3T 2 (1 − T ), we find thatχ ∝ (3T /2 − 1) / (1 − T ) so that close to the tran-
sition χ ≈ (1/2) (1 − T )−1. An even more instructive form of this result is obtained
by substituting T by T/Tc:

χ ∝ (Tc − T )−1.



Chapter 2
The First Law

Problem 2.1.
A thermally insulated vessel fitted with a large valve contains air at 50 ◦C and
0.5 bar. The valve is opened so that additional air from the surrounding atmosphere
at 0 ◦C and 1 bar enters the vessel. What is the temperature of air in the vessel after
it comes to rest but before it exchanges any heat with the walls?

We consider two subsystems: The air that enters the vessel from outside and the
air present in the vessel before the valve is opened (Fig. 2.1). For the first subsystem
in the initial state we write p1V ′

1 = m1RT ′
1/M ;

p
V
T

2

2
′

′ p
V
T

1

1

1

′

p
V
T

1final
state

initial
state ′

Fig. 2.1 Ambient air entering a thermally insulated vessel, with the two subsystems physically
separated from each other in the initial state

here p1 and T ′
1 are the ambient pressure and temperature, respectively, whereas V ′

1
is the (unknown) initial volume of air to be pushed into the vessel after the valve is
opened. For the second subsystem, we have p′

2V = m2RT ′
2/M in the initial state,

© Springer Nature Switzerland AG 2019
G. Skačej and P. Ziherl, Solved Problems in Thermodynamics
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12 2 The First Law

where p′
2 and T

′
2 are the initial pressure and temperature andV is the vessel volume. In

the final state, the equation of state reads p1V = (m1 + m2)RT/M ; here T denotes
the final temperature. The atmosphere expendswork on the air pushed into the vessel;
the work supplied to this mass of air is W = p1V ′

1. Since there is no heat exchange
between the system and the environment, the first law for the air that ends up in the
vessel in the final state reads p1V ′

1 = m1cV (T − T ′
1) + m2cV (T − T ′

2), where T is
the final temperature. From the three equations of state we extract the work supplied
p1V ′

1 as well as m1 and m2. From the first law, we finally obtain

T = κT ′
1

[
1 + p′

2

p1

(
κ
T ′
1

T ′
2

− 1

)]−1

= 350 K.

Here we introduced κ = cp/cV and took into account that in an ideal gas, the differ-
ence in specific heat capacities cp − cV = R/M .

Limiting cases: For an initially evacuated vessel (p′
2 = 0) we have T = κT ′

1,
whereas for a vessel initially containing air at an ambient temperature and pressure
(p′

2 = p1 and T ′
2 = T ′

1) the temperature remains unchanged as expected, i.e., T = T ′
2.

Problem 2.2.
A thermally insulated cylinder with a movable light piston contains air at an ambient
pressure 1 bar and temperature 20 ◦C as well as an ampoule with 0.5 l of air at
3 bar and 100 ◦C; the initial total volume of the chamber is 2 l. The ampoule
explodes. What are the final volume and temperature of air in the chamber? No heat
is exchanged with the walls and the piston; the walls of the ampoule are very thin
and the heat capacity ratio for air is 7/5.

In the initial state, we have p′V ′
1 = m1RT ′

1/M for the air in the ampoule and
pV ′

2 = m2RT ′
2/M for the air in the chamber, where p is the pressure in the chamber

and in the atmosphere (Fig. 2.2). The final chamber volume and temperature, V and

final
state

initial
state

p
p
V
T

′p V T, , 11

′p V T, , 22
p′

′

′

Fig. 2.2 Air in the chamber expends work against constant atmospheric pressure
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T , are determined by mechanical equilibrium and the first law. The pressure in the
chamber must be equal to the ambient pressure so that p = (m1 + m2)RT/MV .
Since the chamber is insulated, the first law for the air in it reduces to �U = W
(where �U denotes the change of internal energy) or

(m1 + m2)cV T − m1cV T
′
1 − m2cV T

′
2 = −p

[
V − (V ′

1 + V ′
2)

]

as the air expends work against constant ambient pressure. This result can be com-
bined with the above equations of state to obtain

V =
(
1 + p′/p − 1

κ

)
V ′
1 + V ′

2 = 2.71 l ,

where R/McV = κ − 1. The final temperature reads

T =
(
p′

p

V ′
1

VT ′
1

+ V ′
2

VT ′
2

)−1

= 297 K.

Problem 2.3.
A horizontal cylinder is divided into two evacuated chambers by a movable piston.
The first chamber has a large valve which connects it to the ambient atmosphere
at 20 ◦C and 1 bar, whereas the second one is sealed. The piston is attached to
the cylinder wall by a spring; as long as the spring is undeformed, the volume of
the first chamber is 1 l. The inner diameter of the piston is 6 cm and the spring
constant 103 N/m. The valve is opened so that air can enter the first chamber. What
is the temperature of air in the cylinder once it comes to rest if the air exchanges no
heat with the cylinder?

The ambient atmosphere ensures that the process is isobaric at pressure p. In
the final state, p = kh/A, where k and h are the spring constant and displacement,
respectively, and A is the cross section of the cylinder. The final volume of the first
chamber is then given by V = V + Ah = V + pA2/k; V denotes the initial volume
of the chamber (Fig. 2.3). The expansion of air into the cylinder is described by
the Gay–Lussac law V ′/T ′ = V/T , where V ′ is the volume of air that enters the
cylinder in the initial state before the valve is opened and T ′ the temperature of
the atmosphere. From here one has V ′ = (

V + pA2/k
)
T ′/T . The first law for the

air that enters the cylinder reads mcV (T − T ′) = pV ′ − kh2/2 = pV ′ − p2A2/2k,
where the right-hand side includes work supplied to the air by the atmosphere and
the work expended by the air against the spring. Since pV ′ = mRT ′/M , we further
have T − T ′ = (κ − 1)

(
T ′ − pA2T/2kV

)
and finally we obtain
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p
V
T

p
V
= 0

p
V
T

′
′

final
state

initial
state

Fig. 2.3 Ambient atmosphere expends work against the air pushed into the evacuated cylinder, and
the air in turn expends work against the spring

T = κT ′
(
1 + κ − 1

2

1

1 + Vk/pA2

)−1

= 376.6 K.

Limiting cases: If we set the initial volume of the first chamber V to 0 we have T =
2κT ′/(κ + 1). For a very stiff spring with k → ∞, the final temperature T = κT ′
coincides with the result of Problem 2.1.

Problem 2.4.
Two one-liter thermally insulated vessels are connected by a valve. The first vessel
contains air at 1 bar and 20 ◦C, whereas the second one is evacuated. What are the
temperatures of air in both vessels immediately after the valve is opened so that the
pressures are equalized? No heat is exchanged with the walls of the vessels and the
valve. What is the final state if the second vessel initially contains air at 0.5 bar and
100 ◦C instead of being empty?

The system as a whole exchanges neither work nor heat with the environment;
hence �U = �U1 + �U2 = m1cV (T1 − T ′

1) + m2cV (T2 − T ′
1) = 0, where m1 and

m2 denote the final masses of air in the first and the second vessel, respectively, and
T1 and T2 are the corresponding temperatures; T ′

1 is the initial temperature or air in
the first vessel. It follows that

m1T1 + m2T2 = m ′
1T

′
1 ,

where m ′
1 = m1 + m2 is the total mass of air. In the final state the vessels are

in mechanical equilibrium so that p1 = p2 and thus m1RT1/MV = m2RT2/MV ,
where V is the volume of each vessel. Hence

m1T1 = m2T2 ,
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which yields, together with the above relation obtained from the first law, 2m1T1 =
2m2T2 = m ′

1T
′
1.

The air that remains in the first vessel expends work on the rest of the air but
exchanges no heat with it or with the environment. At any stage of the process,
the first law for the air in the first vessel reads m1cV dT1 = −p1 dV1. Since the
mass of air in the first vessel decreases upon expansion when air is pushed into
the second vessel, we have dV1 = −dm1/ρ1. As ρ1 = m1/V this gives m1cV dT1 =
(RT1/M) dm1, and upon inserting R/M = cp − cV and κ = cp/cV we find that
dT1/T1 = (κ − 1) dm1/m1. By integrating from the initial to the final state we obtain

m1

m ′
1

=
(
T1
T ′
1

)1/(κ−1)

.

An alternative approach leading to the same result is to realize that the air that
remains in the first vessel in the final state undergoes a reversible adiabatic process
described by pV κ = const.; we then use this relation together with the relevant
equations of state. —Since we also have 2m1T1 = m ′

1T
′
1 or m1/m ′

1 = T ′
1/2T1, we

finally find that
T ′
1

2T1
=

(
T1
T ′
1

)1/(κ−1)

or
T1 = T ′

12
1/κ−1 = 240 K.

The masses of air in the two vessels arem1 = m ′
1T

′
1/2T1 = 0.61m ′

1 andm2 = m ′
1 −

m1 = 0.39m ′
1, and the final temperature of air in the second vessel reads

T2 = m1T1
m2

= 375 K.

This analysis can be generalized to the case where the second vessel is initially
not evacuated. Now the first law is rewritten as �U = �U1 + �U2 = (m1cV T1 −
m ′

1cV T
′
1) + (m2cV T2 − m ′

2cV T
′
2) = 0 or

m1T1 + m2T2 = m ′
1T

′
1 + m ′

2T
′
2 ,

where m ′
1 and m ′

2 are the initial masses of air in the two vessels, whereas T ′
1 and

T ′
2 are the corresponding temperatures. Mechanical equilibrium still implies that

m1T1 = m2T2. Some care is required when considering the first law for a subsystem.
It is easiest to write it for the air that remains in the vessel with the higher initial
pressure as there will be a net flow of air from higher to lower pressure after the
valve is opened (Fig. 2.4). Alternatively, one can also apply the first law to the air
that ends up in the lower pressure vessel, but this is somewhat more tricky because
this mass of air consists of air initially present in this vessel and of air that enters in
from the higher pressure vessel.—In our case, the initial pressure in the first vessel is



16 2 The First Law

p
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T

1

1
′

′ p
V
T

2

2

< p1

′

′ ′

Fig. 2.4 After the valve is opened, air flows from the first vessel to the second one where the
pressure is lower. The air that remains in the first vessel (shaded) expands adiabatically, pushing
some air from this vessel into the second one

higher than the pressure in the second one: p′
1 > p′

2. Following the same reasoning

as in the first part of this Problem, we have m1/m ′
1 = (

T1/T ′
1

)1/(κ−1)
. By writing

m ′
1 = p′

1V M/RT ′
1 and m ′

2 = p′
2V M/RT ′

2, we find that

T1 = T ′
1

(
2

1 + p′
2/p

′
1

)1/κ−1

= 270 K.

Since m1 = (
m ′

1T
′
1 + m ′

2T
′
2

)
/2T1 and m2 = m ′

1 + m ′
2 − m1,

T2 = m1T1
m2

= 380 K.

Problem 2.5.
A five-liter tank contains oxygen at an initial pressure of 10 bar and a constant
temperature of 20 ◦C. Half of the gas is allowed to slowly escape. How much heat
is supplied to the gas by the thermostat during this process?

As the process is slow, we may assume that the oxygen in the tank expands
isothermally. The internal energy of the gas present in the tank at any given time
thus does not change; therefore heat must be supplied to the gas in the tank by the
thermostat to compensate for the work expended on the gas that is being pushed out.
The work expended by the oxygen in the tank is

W = −
∫ m ′/2

0
p dV = −

∫ m ′/2

0

(m ′ − m)RT

MV

dm

ρ
,

where we integrate over the mass of oxygen that escapes from the tank; m ′ stands
for the initial mass of oxygen in the tank whereas V is the tank volume. Since
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ρ = (m ′ − m)/V , we have

W = − RT

M

∫ m ′/2

0
dm = − p′V

2
= −2.5 kJ .

The thermostat supplies 2.5 kJ of heat to the oxygen.

Problem 2.6.
Identical vessels are connected by a thermally insulated valve, which is initially
closed. The first vessel is evacuated and in contact with a thermostat, whereas the
second vessel contains air at 20 ◦C and is thermally insulated. The valve is slightly
opened such that the first vessel remains in equilibrium with the thermostat at 20 ◦C.
Once the pressures in the vessels equalize, the valve is closed. Find the final temper-
ature of air in the second vessel!

After pressures equalize, we have m1T1 = m2T2; here m1 and m2 are the masses
of air in the first and in the second vessel, respectively, T1 is the temperature of the
thermostat, and T2 is the final temperature of air in the second vessel. The air in the
second vessel receives no heat so that m2cV dT2 = −p2 dV2 and as in Problem 2.4
we obtain m2/m ′

2 = (
T2/T ′

2

)1/(κ−1)
with m ′

2 = m1 + m2 since initially the first ves-
sel is evacuated. This relation and m2 = m ′

2T1/(T1 + T2), which follows from the
condition of mechanical equilibrium, together result in

(
1 + T2

T1

)(
T2
T ′
2

)1/(κ−1)

= 1.

This equation can only be solved numerically: T1 = T ′
2 and κ = 1.4 give T2 =

0.792 T ′
2 = 232 K. The final pressure is 0.442 p′

2, where p′
2 stands for the initial

pressure in the thermally insulated vessel.

Problem 2.7.
A thermally insulated valve connects two identical vessels. The first one is immersed
into a thermostat and contains air at 20 ◦C; the second one is evacuated and ther-
mally insulated. The valve is slightly opened so as to keep the first vessel in equi-
librium with the thermostat at all times. Calculate the final air temperature in the
insulated vessel after pressures become equal, assuming that no heat is exchanged
between the air and the walls of the second vessel!

The air that is pushed from the first to the second vessel receives work from the
air that remains in the first vessel: W2 = −W1 = ∫

p1 dV1 = (RT1/M)
∫ m2

0 dm2 =
m2RT1/M , where T1 is temperature of the thermostat and m2 is the final mass of air
in the second vessel. The first law gives m2cV (T2 − T1) = m2RT1/M and from here
one obtains
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T2 = T1 + R

McV
T1 = κT1 = 410 K.

Once the pressures in the two vessels equalize, we canwritem1T1 = (m ′
1 − m1)T2 =

m2T2 orm2 = m ′
1/(κ + 1) = 0.42m ′

1 andm1 = 0.58m ′
1, which yields the final pres-

sure p1 = p2 = [κ/(κ + 1)] p′
1, where p′

1 is the initial pressure in the first vessel.

Problem 2.8.
An evacuated vessel of negligible heat capacity is immersed into boiling water at
100 ◦C and 1 bar. The vessel is fitted with a valve, which is briefly opened so as to
equalize the pressure within the vessel with the ambient pressure. Find the fraction
of water that evaporates during the process!

The temperature and the pressure of water pushed into the vessel by the sur-
rounding water remain unchanged. The work expended by the surrounding water
is pV , where V is the initial volume of water that enters the vessel. This results
in an increase of internal energy of this body of water; a part of it evaporates in
order to establish the equilibrium between the boiling water and vapor. We thus
have�U = mv(qv − RT/M) = pV and V = ml/ρl , wheremv is the mass of vapor
whereas ml and ρl denote the mass and the density of water that enters the vessel,
respectively. The mass fraction of the evaporated water is

mv

ml
= p

ρl(qv − RT/M)
= 5.1 × 10−5.

The vapor–water volume ratio in the vessel is much larger—approximately Vv/Vl ≈
mvρl/mlρv = 0.081 (here ρv is the density of vapor). The mass of water in the vessel
is only slightly smaller than ml . Here we used data from the steam tables for water
(see Appendix A): At 100 ◦C one has ρ−1

l = 1.043 dm3/kg and ρ−1
v = 1.673 m3/kg.

Problem 2.9.
A thermally insulated and evacuated one-liter vessel contains an ampoule with 200 g
of boiling water at 1 bar. The ampoule breaks. Find the approximate value of the
final temperature of the system provided that the heat capacities of the vessel and
the ampoule are negligible!

After the ampoule breaks, a small amount of water evaporates so as to establish
the equilibrium between water and vapor, whereas the rest of water slightly cools
down (Fig. 2.5). In the process, the internal energy of the system does not change:
mv(qv − RT ′/M) − mlclV �T = 0. Here mv is the mass of vapor, ml is the mass of
water, and �T = T ′ − T > 0 is the temperature drop; T ′ and T are the initial and
the final temperature, respectively. We neglect the heat capacity of vapor. Therefore

�T = mv(qv − RT ′/M)

mlclV
.
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p = 0
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vapor

water, T
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Fig. 2.5 As the volumes of the vessel and the ampoule containing boiling water are comparable,
only a small amount of water evaporates after the ampoule is broken. This, in turn, results in a rather
small temperature change

The mass of vapor is obtained from

mv = ps(T )VvM

RT
,

where Vv denotes the volume of vapor and ps(T ) is the saturated vapor pressure
at temperature T . For small temperature changes Vv can be approximated by the
difference of volumes of the vessel and the ampoule denoted by�V . This can be done
because only a small amount of water evaporates and, consequently, in equilibrium
the volume of water is only slightly smaller than the volume of the ampoule. Then
we find mv ≈ ps(T ′)�V M/RT ′ = 0.464 g and

�T ≈ 1.15 K.

If the ampoule were much smaller than the vessel, a significant part of water would
evaporate before the vapor–water equilibrium is established. In this case the above
equations have to be solved numerically by taking into account the temperature
dependence of the saturated vapor pressure.

Problem 2.10.
A tank containing 1 kg of boilingwater is placed in an evacuated container immersed
in a thermostat at 100 ◦C. The volume of the container is 1 m3.How much heat does
the container exchange with the thermostat after the wall of the tank is broken?What
is the result if this happens at 52 ◦C? The heat of vaporization is 2.257 MJ/kg at
100 ◦C and 2.377 MJ/kg at 52 ◦C, and the saturated vapor pressure is 1.0133 bar
at 100 ◦C. The molar mass of water is 18 kg/kmol.
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We first consider the case of the thermostat at T ′ = 100 ◦C. Evaporation of water
from the tank will cease once the saturated vapor pressure ps(T ′) is reached; during
evaporation at T ′ the temperature does not change. In equilibrium, the mass of vapor
is m ′

v ≈ ps(T ′)(V0 − V1)M/RT ′ = 0.59 kg, where V0 and V1 ≈ 1 dm3 denote the
container and tankvolume, respectively. The heat needed for evaporation into vacuum
is supplied by the thermostat and reads

m ′
v

[
qv(T

′) − RT ′

M

]
≈ 1.22 MJ ,

where qv(T ′) denotes the heat of vaporization at T ′.
At the lower temperature of the thermostat T ′′ = 52 ◦C, the final saturated vapor

pressure is lower than at T ′. We calculate it using the Clausius–Clapeyron equation

dps
dT

= qv(T )

T
(
ρ−1

v − ρ−1
l

) ≈ psMq̄v

RT 2
,

where we took into account that the density of vapor ρv = psM/RT is much smaller
than that of water ρl . Note also that the heat of vaporization depends on temperature;
we inserted its mean value q̄v = [qv(T ′) + qv(T ′′)]/2. After integration one obtains

ps(T
′′) = ps(T

′) exp
(
Mq̄v

R

(
1

T ′ − 1

T ′′

))
≈ 0.139 bar ,

which is slightly higher than the value listed in the steam table (0.137 bar; see
Appendix A). Based on ps(T ′′), we find that the mass of vapor m ′′

v ≈ 0.093 kg and
the heat supplied by the thermostat

m ′′
v

[
qv(T

′′) − RT ′′

M

]
≈ 0.206 MJ .

Problem 2.11.
In a thermally insulated ten-liter vessel lies a paramagnetic cuboid with a volume
of 0.1 dm3 and a heat capacity of 10 J/K. The vessel is surrounded by atmosphere
at 1 bar and 27 ◦C. A valve connecting the vessel to the atmosphere is opened and
left open until the pressures equalize and the air exchanges heat with the cuboid.
Calculate the final temperature in the vessel! The initial temperature of the cuboid
is −173 ◦C; the heat capacity ratio of air is 7/5. What is the answer if the process
takes place in a magnetic field of strength of 107 A/m? The magnetic susceptibility
of the paramagnet is given by the Curie law χ = a/T with a = 0.1 K.
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It is best if the cuboid and the air that enters the vessel together are treated as a
single system (Fig. 2.6). Thework done on the systemby the atmosphere isW = pV ′

1,
where V ′

1 denotes the volume of air that enters the vessel and p is the atmospheric
pressure; the mass of air ism ′

1. As a result, the internal energy of the system changes
by

�U = m ′
1cV (T − T ′

1) + C(T − T ′
2) ,

where cV is the specific heat of air, C is the heat capacity of the block, T ′
1 is the

temperature of the atmosphere, T ′
2 is the initial temperature of the cuboid, and T

is the final temperature of the system. No heat is exchanged with the environment.
From �U = W , cV = R/M(κ − 1), κ = cp/cV , and the equations of state pV ′

1 =
(m ′

1/M)RT ′
1 and pV1 = (m ′

1/M)RT (where V1 is the difference of volumes of the
vessel and the cuboid) one arrives at a quadratic equation that determines T :

C T 2 +
(

pV1

κ − 1
− CT ′

2

)
T − κpV1

κ − 1
T ′
1 = 0.

The physically relevant solution is T = −16 ◦C.

′C T, 2

p
V
T
1

1
′
′

final
state

initial
state

p = 0

p
V
T

Fig. 2.6 Air that enters the vessel and the paramagnetic cuboid in the vessel are seen as the system
of interest

In a magnetic field of strength H , the change of the internal energy is given by
the same expression as above, because (∂U/∂T )H does not depend on H . At the
same time, the change of temperature of the cuboid, which is induced by the air
pushed into the vessel, is accompanied by a change in its magnetization resulting in
an additional (magnetic) contribution to work:
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Wm =
∫ T

T ′
2

μ0V2H dM = μ0V2aH
2
(
T−1 − T ′−1

2

)
.

We used the Curie law M = aH/T which gives dM = −(aH/T 2) dT ; V2 denotes
the volume of the cuboid. Now we have �U = W + Wm , leading to a modified
quadratic equation for T

C T 2 +
(

pV1

κ − 1
− CT ′

2 + μ0V2aH 2

T ′
2

)
T −

(
pV1κ

κ − 1
T ′
1 + μ0V2aH

2

)
= 0 ,

which gives T = −16.3 ◦C.

Problem 2.12.
Water at 40.6 bar and 250 ◦C is pushed along a thermally insulated tube through a
valve into a chamber where the pressure drops to 10 bar. How much water evapo-
rates? The missing data are to be extracted from the steam table (see Appendix A).

The process takes place at constant enthalpy. From the steam table we find that
at 10 bar the vapor–water equilibrium is at 180 ◦C, which is the final temperature of
the system. For this constant-enthalpy process, we have

m ′
l h

′
l = mlhl + mvhv.

Here m ′
l and ml are the initial and final mass of water, respectively, mv is the mass

of vapor, whereas h′
l , hl , and hv are the corresponding specific enthalpies. The final

specific enthalpies of vapor and water, hv = 2778 kJ/kg and hl = 763 kJ/kg, are
found in the table. On the other hand, the initial specific enthalpy of water h′

l slightly
exceeds the tabulated value of 1086 kJ/kg which corresponds to phase equilibrium
at 39.8 bar rather than at 40.6 bar. The correction �h′

l = �p/ρl = 102 J/kg can be
neglected, which finally leads to

mv

m ′
l

= h′
l − hl

hv − hl
= 0.16.



Chapter 3
The Second Law

Problem 3.1.
A calorimeter contains 0.8 kg of water and 0.2 kg of ice in equilibrium at 0 ◦C. A
one-kilogram piece of iron, initially at 100 ◦C, is dropped into the water. Calculate
the temperature of the system in equilibrium as well as the change of entropy of
the system, assuming that thermal insulation is perfect! The heat capacity of iron is
450 J/kgK and that of water is 4180 J/kgK; the heat of fusion of ice is 336 kJ/kg.

We denote the masses of ice and iron bymi andmFe, respectively, and their initial
temperatures by T0 and TFe. The heat required tomelt all of the ice ismiq f = 67.2 kJ.
On the other hand, upon cooling from 100 ◦C to 0 ◦C the piece of iron emits only
Q = mFecp(TFe − T0) = 45 kJ of heat. (Here cp is the specific heat of iron and q f

is the heat of fusion of ice.) Thus, in the final state water and ice coexist and the
final temperature is 0 ◦C; the mass of ice that melts is m ′

l = Q/q f = 0.134 kg. As
the process is irreversible, the entropy change is calculated by considering a process
involving reversible heat exchange that leads to the same final state:

�S = mFecp

∫ T0

TFe

dT

T
+ m ′

lq f

T0
= 24.5 J/K .

Problem 3.2.
A small piece of ice is thrown into supercooledwater at −20 ◦C as a seed crystal. Cal-
culate the fraction of water that freezes and calculate the corresponding increase of
specific entropy! The heat of fusion of ice at 0 ◦C and 1 bar is 336 kJ/kg; the specific
heat capacities of ice and water are 2100 J/kgK and 4180 J/kgK, respectively.

The final temperature at a pressure of 1 bar is 0 ◦C. We denote the initial mass
of water by m and the mass of water that freezes by m ′. Then the heat emitted upon
freezing (m ′q f ) is expended to heat the supercooled water from T ′ = −20 ◦C to
T = 0 ◦C, the heat required for this being given by mcp(T − T ′). Here cp is the
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G. Skačej and P. Ziherl, Solved Problems in Thermodynamics
and Statistical Physics, https://doi.org/10.1007/978-3-030-27661-4_3

23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27661-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-27661-4_3


24 3 The Second Law

specific heat of water and q f is the heat of fusion of ice. The fraction of water that
freezes is equal to

x = m ′

m
= cp(T − T ′)

q f
= 0.25 ;

the process is irreversible. Like in Problem 3.1, the entropy change is calculated for
a suitable reversible process ending in the same final state as the original process,
where the supercooled water is first reversibly heated to 0 ◦C and then the above
fraction of water is reversibly frozen at this temperature. Therefore

�s = �S

m
= cp

∫ T

T ′

dT

T
− xq f

T
= 11.8 J/kgK .

Problem 3.3.
A thermally insulated container is partitioned into halves by a wall. The first half
contains boiling water at 130 ◦C, whereas the second one is evacuated. The total
volume of the container is 5 dm3. At some point the wall breaks, and the system
is allowed to reach the equilibrium state. Find the change of entropy of water! The
molar mass and density of water are 18 kg/kmol and 934 kg/m3, respectively;
the saturated vapor pressure at 130 ◦C is 2.7 bar and the heat of vaporization
is 2.17 MJ/kg; the constant-volume specific heat capacities of vapor and liquid
water are 1900 J/kgK and 4180 J/kgK, respectively.

The total mass of water ism = ρV/2 = 2.33 kg; ρ = 934 kg/m3 and V = 5 dm3.
A fraction of water of initial temperature T = 130 ◦C evaporates and fills the empty
space in the container; consequently, the vapor and the remainingwater cool down by
�T . One can expect that only a small fraction of water evaporates and that�T � T .
In this case, the vapor pressure does not differ significantly from the saturated vapor
pressure ps at the initial temperature and the mass of vapor can be readily calculated
by approximating it by an ideal gas, which givesmv = psV M/2RT = 3.63 g. Upon
expansion into vacuum, there is no work expended by vapor and the first law thus
reads

mv

(
qv − RT

M

)
= mvc

v
V �T + (m − mv) c

l
V �T ,

where qv is the heat of vaporization at 130 ◦C and the indices (either in subscript or
superscript) refer to the state of matter: Liquid (l) or vapor (v). This gives

�T = mv (qv − RT/M)

mvcv
V + (m − mv) clV

≈ mv (qv − RT/M)

mclV
= 0.74 K � T .

We neglected the heat capacity of vapor. The entropy change is now calculated by
considering a reversible process, where the boiling water is first vaporized at constant
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ps and then the whole system is cooled by �T :

�S ≈ mvqv

T
+ mclV ln

(
1 − �T

T

)
= 1.65 J/K .

Again, we assumed that mvcv
V � mclV .

Problem 3.4.
A vessel contains 500 l of air at 1 bar and 20 ◦C and a one-liter bottle filled with air
at 100 bar and −20 ◦C. The bottle explodes. Find the final air temperature if 8 kJ of
heat broke into the vessel from the environment during the explosion! Calculate the
change of entropy of air! The heat capacity of air at constant volume is 720 J/kgK
and the heat capacity ratio 7/5.

Let the indices “1” and “2” denote the air in the vessel and in the bottle, respec-
tively. Before explosion, the two masses of air are described by p1V1 = m1RT1/M
and p2V2 = m2RT2/M . We consider the two masses as a single system so that the
first law reads m1cV (T − T1) + m2cV (T − T2) = Q, where Q is the heat supplied
by the environment. Upon inserting m1 and m2 expressed from the above equations
of state, we find that the final temperature is given by

T = Q(κ − 1) + p1V1 + p2V2

p1V1/T1 + p2V2/T2
= 27.7 ◦C.

The change of entropy is calculated by imagining a reversible process that brings
each of the two masses of air from its initial state to the common final state, that is,

�S = cV

[
m1 ln

(
T

T1

)
+ m2 ln

(
T

T2

)]

+ R

M

[
m1 ln

(
V

V1

)
+ m2 ln

(
V

V2

)]
,

where V = V1 + V2; this gives �S = 274 J/K. Note that this value differs from∫
dQ/T since the process is irreversible. Here the heat Q merely co-determines the

final state, i.e., the final temperature.

Problem 3.5.
A heat pump receives heat from a river at 0 ◦C and supplies it to a radiator at 30 ◦C.
What is the minimum work needed for every joule of heat emitted by the radiator?

We use Q1 to denote the heat received by the pump at T1 = 0 ◦C from the river
and Q2 to denote the heat emitted at T2 = 30 ◦C by the radiator (Fig. 3.1). The work
needed is W = Q2 − Q1, and from the second law for a closed cycle it follows that
Q2/T2 ≥ Q1/T1. Therefore

W

Q2
≥ 1 − T1

T2
= 0.099
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W

T1

T2

Q1

Q2

Fig. 3.1 Energy balance of a heat pump

so that every joule of heat emitted requires at least 99 mJ of work.

Problem 3.6.
A refrigerator pumps heat at 0 ◦C and emits it into the environment at 20 ◦C, receiv-
ing instead of work additional heat at 100 ◦C. How much heat must the refrigerator
at least receive at 100 ◦C for every joule of heat absorbed at 0 ◦C?

Let us denote the heat emitted/received by the system at Ti (i = 0, 1, 2; Fig. 3.2)
by Qi where T0 = 0 ◦C, T1 = 20 ◦C, and T2 = 100 ◦C. The first and the second laws
read Q0 + Q2 = Q1 and Q0/T0 + Q2/T2 ≤ Q1/T1, respectively. It follows that

Q2

Q0
≥ T−1

1 − T−1
0

T−1
2 − T−1

1

= 0.34 .

For every joule of heat absorbed at 0 ◦C, at least 0.34 J of heat has to be supplied to
the refrigerator at 100 ◦C.

T1

T0

T2

Q1

Q0

Q2

Fig. 3.2 Energy balance of a refrigerator receiving heat instead of work

Problem 3.7.
An ideal heat engine operates between thermal reservoirs of finite capacities and
initial temperatures of 200 ◦C and 150 ◦C. The heat capacity of each reservoir is
5 MJ/K. Calculate the equilibrium temperature, the total work performed by the
engine, and the total change of entropy!
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We denote the initial temperatures of the reservoirs by T ′
1 = 200 ◦C and T ′

2 =
150 ◦C, and the corresponding heat capacities byC .While heat is being pumped from
the first to the second reservoir, the difference of the instantaneous temperatures of
the reservoirs’ T1 and T2 decreases (Fig. 3.3). In each cycle, heat dQ1 = −C dT1 is
absorbed by the engine from the hotter reservoir (dT1 < 0) and heat dQ2 = −C dT2
(dT2 > 0) is emitted to the colder reservoir. As the engine is ideal dS = dQ1/T1 +
dQ2/T2. In each cycle we have dS = 0 so that

p

V

T1

T2

T2

T

T1

Fig. 3.3 pV diagram of an ideal heat engine operating between thermal reservoirs with finite heat
capacities. The steep lines are the adiabats; they are connected by the less steep isotherms. The
useful work performed by the engine decreases from cycle to cycle and when the temperatures of
the reservoirs equalize, the engine ceases to operate. The diagram represents the cycle for an ideal
gas

∫ T

T ′
1

dT1
T1

= −
∫ T

T ′
2

dT2
T2

,

where T stands for the final temperature. After integration we obtain

T =
√
T ′
1T

′
2 = 174.3 ◦C .

The total useful work done by the engine is W = − ∫
(dQ1 + dQ2) or

W = C

(∫ T

T ′
1

dT1 +
∫ T

T ′
2

dT2

)
= C

(
2T − T ′

1 − T ′
2

) = −7 MJ .

The change of entropy of the reservoirs is
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�S =
∫ T

T ′
1

dQ1

T1
+

∫ T

T ′
2

dQ2

T2

= −C

(∫ T

T ′
1

dT1
T1

+
∫ T

T ′
2

dT2
T2

)
= ln

T 2

T ′
1T

′
2

= 0 ,

which could have been guessed in advance since the engine is ideal and dS = 0
separately in each cycle.

Problem 3.8.
An ideal heat pump absorbs heat from a superconducting sample, initially at 10 K,
and pumps it into a thermal reservoir held at a constant temperature of 12 K.
Find the amount of heat pumped into the reservoir by the time the sample cools
down to 3 K! How much work is expended in the process? Initially the sample is
in the normal phase, whereas at a critical temperature of 7 K it exhibits a second-
order transition into the superconducting phase. The heat capacities of the sample in
the normal and superconducting phase are CN (T ) = bT 3 + cT and CS(T ) = aT 3,
respectively, where a = 10−5 J/K4, b = 8 × 10−6 J/K4, and c = 6 × 10−6 J/K2.

In each cycle, the heat absorbed is dQ1 = −Ci (T1)dT1, where T1 is the tempera-
ture of the sample and the index i = N , S denotes the normal and the superconducting
state depending on T1. In a cooling process that starts at T ′ and continues beyond
the critical temperature Tc to the final state at T , the total heat absorbed reads

Q1 =
∫

dQ1 = −
∫ Tc

T ′
CN (T1)dT1 −

∫ T

Tc

CS(T1)dT1

= −a

4

(
T 4 − T 4

c

) − b

4

(
T 4
c − T ′4) − c

2

(
T 2
c − T ′2) = 21.1 mJ .

(Note that since the normal–superconductor transition is continuous, there is no latent
heat associated with it.) If we denote the heat emitted to the reservoir in each cycle
by dQ0 and the constant temperature of the reservoir by T0, the second law states
that dQ0/T0 + dQ1/T1 = 0. Thus, the total heat pumped into the reservoir is given
by

Q0 = −T0

∫
dQ1

T1
= T0

(∫ Tc

T ′

CN (T1)dT1
T1

+
∫ T

Tc

CS(T1)dT1
T1

)

= T0

[
a

3

(
T 3 − T 3

c

) + b

3

(
T 3
c − T ′3) + c

(
Tc − T ′)] = −33.9 mJ.

The total work expended in the process is −Q0 − Q1 = 12.8 mJ.

Problem 3.9.
The cycle of a heat engine consists of two adiabats and of two isobars. Calculate
the ratio of the highest and the lowest pressure in the engine if its efficiency is to be
0.43! The heat capacity ratio of the working fluid is 7/5.



3 The Second Law 29

Heat is supplied to the working fluid only along the top isobar at p2, which starts
at temperature T2 and ends at T3 > T2; this heat is equal to Qi = mcp(T3 − T2)
(Fig. 3.4). The working fluid emits heat only along the bottom isobar at p1 going
from T4 to T1 < T4; the heat emitted is Qo = mcp(T1 − T4). As each of the two
adiabats connects the same pair of isobars, we have

p

V

T3

T1 T4

T2

Qo

Qi

Fig. 3.4 pV diagram of a cycle consisting of two adiabats and two isobars

T2
T1

=
(
p2
p1

)1−1/κ

= T3
T4

.

The efficiency of the heat engine is equal to

η = Qi + Qo

Qi
= 1 − T4 − T1

T3 − T2
= 1 − T4

T3
= 1 −

(
p1
p2

)1−1/κ

,

which gives
p2
p1

= (1 − η)−κ/(κ−1) = 7.15 .

Problem 3.10.
An ideal refrigerator pumps heat from a thermal reservoir with an infinite heat
capacity at 0 ◦C and emits it to a second reservoir with a heat capacity denoted by
C1 and an initial temperature of 20 ◦C. Instead of work, the refrigerator absorbs
additional heat from a third reservoir with a heat capacity denoted by C2 and an
initial temperature of 100 ◦C. After operating for a period of time, the temperatures
of the second and the third reservoir equalize at 40 ◦C. Find the ratio C2/C1! How
much heat is pumped from the first reservoir until temperatures of the second and
third reservoir equalize if C2 = 5 kJ/K?

Let us denote the instantaneous temperatures of the first, second, and third reser-
voir by T0, T1, and T2, respectively. The initial temperatures of the second and third
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reservoir are T ′
1 = 20 ◦C and T ′

2 = 100 ◦C, whereas the temperature of the first one
remains constant at T0 = 0 ◦C. In each cycle, the refrigerator receives heat from
the first and the third reservoir (dQ0 and dQ2 = −C2 dT2, respectively) and supplies
heat to the second reservoir (dQ1 = −C1 dT1): dQ0 + dQ1 + dQ2 = 0. At the same
time, the second law states that dQ0/T0 + dQ1/T1 + dQ2/T2 = 0, yielding

dQ2

dQ1
= C2 dT2

C1 dT1
= T−1

1 − T−1
0

T−1
0 − T−1

2

.

Once T1 and T2 become equal, we have dQ1 = −dQ2 and hence dQ0 = −dQ1 −
dQ2 = 0: Beyond this point, no heat is pumped from the first reservoir anymore. The
above equation is rearranged and integrated from T1 and T2 to the final temperature
T to obtain

C2

C1
= −T0 ln(T/T ′

1) − T + T ′
1

T0 ln(T/T ′
2) − T + T ′

2

= 0.163 .

The total heat absorbed from the first reservoir is now equal toC2(T − T ′
2) + C1(T −

T ′
1) = 314 kJ.

Problem 3.11.
A Carnot heat engine uses an ideal monatomic gas as the working fluid and operates
between temperatures T0 and T1 = 4T0. The highest-to-lowest gas volume ratio in
the cycle is V1/V0 = 64. By what factor does the work done by the engine per cycle
increase or decrease if the working fluid is replaced by an ideal diatomic gas? The
number of moles of the gas as well as T0, T1, V0, and V1 remain unchanged; the
heat capacity ratios cp/cV for a monatomic and diatomic gas are 5/3 and 7/5,
respectively.

Since the efficiency of the Carnot engine depends only on temperatures T0 and
T1, it remains unaltered upon changing the working fluid. The ratio of the work
done by a diatomic gas and a monatomic gas W2/W1 is, therefore, equal to the
ratio of the respective amounts of heat supplied along the hotter isotherm Q2/Q1.
On the pV diagram (Fig. 3.5), the hotter isotherm extends to V ′′ in the case of the
monatomic gas but only to V ′ < V ′′ in the case of the diatomic gas; consequently
Q2 = (m/M)RT1 ln (V ′/V0) and Q1 = (m/M)RT1 ln (V ′′/V0) are not equal.

The volumes V ′ are V ′′ related through the equations of the adiabatic process
T1V ′′κ1−1 = T0V

κ1−1
1 and T1V ′κ2−1 = T0V

κ2−1
1 , where κ1 and κ2 are the correspond-

ing heat capacity ratios. It follows that

W2

W1
= ln (V1/V0) + (κ2 − 1)−1 ln (T0/T1)

ln (V1/V0) + (κ1 − 1)−1 ln (T0/T1)
= 1

3
.

A diatomic gas apparently provides less useful work in each cycle because the slope
of the adiabats is lower than for the monatomic gas.
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p

2T

T1

T0

V

V1V0 V V

Fig. 3.5 pV diagrams of a Carnot heat engine operating between the same two isotherms and
between the same largest and smallest volume using a monatomic gas (solid line) and a diatomic
gas (dashed line). For a diatomic gas, the surface area enclosed by the isotherms and adiabats—and
thus the work done in each cycle—is smaller than for the monatomic gas

Problem 3.12.
A steam engine executes the following cycle: Water at 60 ◦C is first isothermally
compressed to 4.76 bar, then heated to the boiling point at 150 ◦C and evaporated
at constant pressure. Next, steam enters a cylinder where it is adiabatically expanded
to 60 ◦C, and then it is pushed by the piston into the condenser where it condenses
at 60 ◦C. Calculate the efficiency of this engine given that it operates reversibly!
Compare it to the efficiency of a Carnot engine operating between the same extreme
temperatures!

The diagram of the cycle is shown in Fig. 3.6. The heat exchange balance includes
these contributions:

p

V

b

a

d

c

Fig. 3.6 pV diagram of a steam engine: The compression of water (a) is followed by isobaric
heating and evaporation (b), by adiabatic expansion and partial steam condensation (c), and finally,
by a complete steam condensation (d)
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• Upon isothermal compression at T1 = 60 ◦C, from p1 = ps(60 ◦C) = 0.20 bar
to p2 = ps(150 ◦C) = 4.76 bar water emits Q/m = (T1/m)

∫ p2
p1

(∂S/∂ p)T dp =
−T1β(T1)(p2 − p1)/ρl(T1) = −81 J/kg of heat. Here ρ−1

l (T1) = 1.0171 dm3/kg
is the specific volume of water and β(T1) = 5.22 × 10−4 K−1 is the volumetric
thermal expansion coefficient.

• To heat water from T1 to T2 at 4.76 bar requires cp(T2 − T1) = 378 kJ/kg of heat.
• From the steam tables, we find that evaporation of water at T2 requires �h(T2) =
2114.4 kJ/kg of heat.

• Upon adiabatic expansion of steam, sv(T2, p2) = xsv(T1, p1) + (1 − x)sl(T1, p1),
where x stands for the steam fraction in the partially condensed mixture. From the
steam table (Appendix A), it is found that the specific entropy of steam at p2 and T2
is equal to sv(T2, p2) = 6.84 kJ/kgK, whereas the specific entropies of steam and
water at p1 and T1 are sv(T1, p1) = 7.91 kJ/kgK and sl(T1, p1) = 0.83 kJ/kgK,
respectively. It follows that

x = sv(T2, p2) − sl(T1, p1)

sv(T1, p1) − sl(T1, p1)
= 0.849 .

During this stage, the working fluid neither receives nor emits any heat.
• During the final condensation stage at T1, the heat emitted by steam and water
equals x �h(T1) = 0.849 × (−2358 kJ/kg) = −2001 kJ/kg.

The total heat received by the engine is thus Qi = 2458 kJ/kg, whereas the total heat
emitted is Qo = −2001 kJ/kg. The efficiency of the steam engine is then

η = Qi + Qo

Qi
= 0.196 .

The efficiency of a Carnot engine operating between the same extreme temperatures
is 0.213. The performance of the steam engine apparently closely approaches that of
the Carnot cycle.

Problem 3.13.
A mixture of 50% water and 50% steam is adiabatically compressed from 1 bar to
7 bar and released through a thermally insulated nozzle back to the chamber where
a constant pressure of 1 bar is maintained. Find the mass fraction of steam after
two cycles! How many cycles are needed to obtain just one component? Use the data
from the steam table (see Appendix A).

During the first stage of the cycle, entropy is constant. If we denote the mass
fraction of steam before and after the adiabatic process by x ′′ and x ′, respectively,
the constant-entropy condition reads x ′′s ′′

v + (1 − x ′′)s ′′
l = x ′s ′

v + (1 − x ′)s ′
l , where

s ′
v = 6.708 kJ/kgK and s ′′

v = 7.35 kJ/kgK stand for the specific entropies of steam
at 7 bar and 1 bar, respectively, whereas s ′

l = 1.99 kJ/kgK and s ′′
l = 1.31 kJ/kgK are

the respective specific entropies of water. Then we have

x ′ = s ′′
l − s ′

l + (s ′′
v − s ′′

l )x
′′

s ′
v − s ′

l

.
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In the second stage, enthalpy is constant, yielding x ′h′
v + (1 − x ′)h′

l = xh′′
v + (1 −

x)h′′
l . Here x denotes the steam fraction just after the isenthalpic process; the notation

used for the specific enthalpies h′
v = 2764 kJ/kg, h′′

v = 2676 kJ/kg, h′
l = 697 kJ/kg,

and h′′
l = 419 kJ/kg is analogous to that for the specific entropies. Therefore

x = h′
l − h′′

l + (h′
v − h′

l)x
′

h′′
v − h′′

l

.

The fraction of steam before and after each stage is tabulated below for the first five
cycles:

cycle x ′′ x ′ x
1 0.500 0.496 0.577
2 0.577 0.595 0.668
3 0.668 0.711 0.775
4 0.775 0.848 0.900
5 0.900 1.009

The table shows that after the adiabatic stage of the fifth cycle, no water is left in the
system.

Problem 3.14.
A thermostat at 20 ◦C contains a cylinder divided into two equal compartments by
a heavy piston of mass of 1 kg. The compartments are filled with air at 1 bar. The
cylinder is rotated from its initial horizontal position around the center of mass into
the vertical position. Calculate the change of entropy of the system if the diameter of
the cylinder is 5 cm and the initial volume of each compartment is 1 l! The piston
is well sealed.

The air in the lower compartment is isothermally compressed as the cylinder is
rotated, and its pressure is increased from the initial value of p to p2; at the same time,
the air in the upper compartment is isothermally expanded so that its pressure drops
from p to p1. The final volumes of the compartments are determined by mechanical
equilibrium, p2 − p1 = pp, where pp = mg/πr2 is the pressure due to the force of
gravity of the piston; r denotes the radius of the cylinder. As the process is isothermal,
the above condition can be rewritten as pV/V2 − pV/V1 = pp. The total volume of
the cylinder does not change upon rotation or V1 + V2 = 2V , where V is the initial
volume of each compartment. From these equations we obtain

1

2

(
V1

V

)2

+
(

p

pp
− 1

)
V1

V
− p

pp
= 0 .

The solution reads V1 = V
[
1 − p/pp + √

1 + (p/pp)2
]

= 1.025 l, immediately

yielding V2 = 0.975 l.
Since the rotation is carried out around the center of mass, no work is performed

by gravity. The process is isothermal, so the heat exchanged by the air in each
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compartment with the thermostat is equal to minus the work expended. Conse-
quently,�S = −(W1 + W2)/T , withWi = − ∫ Vi

V pi dVi = −pV ln(Vi/V ). Finally
we obtain

�S = pV

T
ln

(
2(p/pp)

[√
1 + (p/pp)2 − (p/pp)

])
= −0.213 mJ/K .

Problem 3.15.
A stage in a heat engine cycle is represented by a polytropic process pV n = const.,
where n = 1.1. For such a process, calculate the heat capacity of air used as the
working fluid! Find the change of entropy of 1 kg of air during this process if the
temperature rises from 50 ◦C to 100 ◦C! The specific heat at constant volume is
723 J/kgK and the heat capacity ratio is 7/5.

The heat that the air exchangeswith the environment during the polytropic process
is calculated using the first law: Q = �U − W . By definition, the change of internal
energy is given by �U = mcV (T − T ′), where T and T ′ are the final and the initial
temperature of the air, respectively. The work done is equal to

W = −
∫ V

V ′
p dV = p′V ′n

n − 1

(
V 1−n − V ′1−n

) = mR

(n − 1)M

(
T − T ′) ,

where we assumed that the air is an ideal gas. The heat exchanged with the environ-
ment is then

Q = m

(
cV − R/M

n − 1

) (
T − T ′) = mcV

n − κ

n − 1

(
T − T ′) ,

where we took into account that R/M = cp − cV and κ = cp/cV . Finally we have

cn = 1

m

dQ

dT
= n − κ

n − 1
cV = −2169 J/kgK .

One readily observes that cn is negative for all n within the range between 1.0 and κ.
For these values of n, the work expended by the working fluid during the polytropic
expansion exceeds the heat absorbed, which results in a decrease of the internal
energy and thus in a decrease of temperature. Let us also mention that the obtained
cn includes a number of well-known processes:

• n = 0 corresponds to an isobaric process and gives cn = κcV = cp;
• n = 1 describes an isothermal process where cn → ±∞;
• n = κ for an adiabatic process with cn = 0; and
• n → ∞ represents an isochoric process, yielding cn = cV .

The dependence of the heat capacity on exponent n is depicted in Fig. 3.7.
Finally, we calculate the change of entropy for a polytropic process with n = 1.1

where the air is heated from 50 ◦C to 100 ◦C:
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Fig. 3.7 Heat capacity for a gas undergoing a polytropic process pV n = const. as a function of n
plotted forκ = 1.4. The limitsn = 0 and n → ∞ correspond to an isobaric and an isochoric process,
respectively; n = 1 represents an isothermal process, and for n = 1.4 the process is adiabatic. For
n between 1 and 1.4, cn < 0

�s = �S

m
=

∫ T

T ′

cn
T
dT = n − κ

n − 1
cV ln

T

T ′ = −312 J/kgK .

Problem 3.16.
In a heat engine, photon gas is subject to a reversible thermodynamic cycle consisting
of two isobars and two isochores. Calculate the efficiency of the cycle if the highest-
to-lowest volume ratio is equal to 3 and the highest-to-lowest pressure ratio is 2!
The density of the internal energy of the photon gas at a temperature T is given by
u = 4σT 4/c, where σ denotes the Stefan constant and c is the speed of light. The
pressure of the photon gas is equal to u/3.

The internal energy of the photon gas is given by U (T, V ) = 4σT 4V/c. The
pressure of the gas depends only on temperature, p(T ) = 4σT 4/3c, and thus the
two isobars at pressures p1 and p2 > p1 correspond to isotherms at temperatures T1
and T2 > T1, respectively. We denote the minimum and the maximum volume by V1

and V2, respectively. The efficiency of a heat engine is defined by η = 1 + Qo/Qi ,
where Qi is the heat supplied to the photon gas in the cycle and Qo is the heat emitted
into the environment. Now

Qi = 4σ

c
(T 4

2 − T 4
1 )V1 + 4σ

c
T 4
2 (V2 − V1) + 4σ

3c
T 4
2 (V2 − V1) ,

where the first term is the heat supplied upon isochoric heating, consisting merely
of the change of internal energy since no work is expended, and the remaining two
terms represent the heat supplied during isobaric expansion; the second term is the
change of internal energy and the third term the work expended. Analogously, the
total heat emitted during the remaining two steps—isochoric cooling and isobaric
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compression—reads

Qo = −4σ

c
(T 4

2 − T 4
1 )V2 − 4σ

c
T 4
1 (V2 − V1) − 4σ

3c
T 4
1 (V2 − V1) .

Thus, we find that the efficiency reads

η = 1 − v(t − 1) + (4/3)(v − 1)

t − 1 + (4/3)t (v − 1)
= 0.105 ,

where v = V2/V1 and t = (T2/T1)4 = p2/p1.

Problem 3.17.
The highest and the lowest pressure in a Carnot engine that uses the photon gas as
the working substance are 2 × 10−5 Pa and 1.2 × 10−5 Pa, respectively. Calculate
the efficiency of the engine!

Regardless of the working substance and its equation of state, the Carnot cycle
consists of two isotherms and two adiabats, and is reversible. Hence, a step-by-step
analysis of the cycle is not necessary as one can immediately apply the well-known
result for the efficiency of the cycle: η = 1 − T1/T2 = 1 − (p1/p2)1/4 = 0.12 .Here
we took into account that in a photon gas p(T ) = 4σT 4/3c; indices “1” and “2” refer
to the lower and the higher isotherm and isobar, respectively.



Chapter 4
Thermodynamic Potentials

Problem 4.1.
One kilogram of mercury is compressed isothermally at 300 K from 0 to 103 bar.
Calculate the corresponding change of internal energy �U! Does the sign of �U
depend on the final pressure? The density of mercury is 13600 kg/m3, its volumet-
ric thermal expansion coefficient 1.81 × 10−4 K−1, and isothermal compressibility
3.9 × 10−11 Pa−1.

The thermodynamic description of the system is based on two pairs of conjugate
variables: Temperature and entropy (T and S) and pressure and volume (p and V ).
The first law reads �U = W + Q. The work received during compression is W =
− ∫ p

0 p dV , and by taking into account dV = −χT V dp with V = m/ρ we obtain

W = mχT p2

2ρ
= 14.3 J ;

ρ and χT denote the density and the isothermal compressibility of the sample,
respectively. The heat exchanged upon reversible compression is given by Q =∫ p
0 T (∂S/∂p)T dp, where theMaxwell relation (∂S/∂p)T = −(∂V/∂T )p = −βV is
to be used; β stands for the volumetric thermal expansion coefficient. For T = 300 K
and p = 103 bar we have

Q = −mβTp

ρ
= −399 J .

The internal energy decreases by �U = W + Q = −385 J. Note that work received
W ∝ p2 and the heat emittedQ ∝ p. Thus at a high enough pressure, |W | > |Q| and
consequently�U > 0. The threshold pressurep′ where the internal energy difference
�U changes sign is given by
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p′ = 2βT

χT
= 2.78 × 104 bar .

Problem 4.2.
In the cadmium galvanic cell, voltage varies with temperature as

φ(T ) = φ0 + a(T − T0) + b(T − T0)
2 ,

where T0 = 20 ◦C, φ0 = 1.0183 V, a = −4.06 × 10−5 V/K, and b = −0.95 ×
10−6 V2/K2. By how much does the internal energy of the cell change after an
electric charge of 1 As is reversibly passed though it at a constant temperature
of 20 ◦C? What is the result if instead the process takes place in a thermally insu-
lated cell and its heat capacity at a constant charge is 4.2 J/K? Thirdly, what is
the change of cell temperature if the terminals are short-circuited and the amount
of charge passed is 1 As? Finally, calculate the difference of heat capacities of the
cell at constant voltage and charge!

The pairs of thermodynamic variables of the system are temperature and entropy
(T and S) and voltage and charge (φ and e). The first law states that dU = T dS +
φ de. We are interested in the change of internal energy upon isothermal charge
transfer, i.e., in �U ≈ (∂U/∂e)T �e, at T0 = 20 ◦C. By taking into account the
Maxwell relation (∂S/∂e)T = −(∂φ/∂T )e, we find that

(
∂U

∂e

)

T

=
[

T

(
∂S

∂e

)

T

+ φ

]

T=T0

= −aT0 + φ0

and therefore
�U = (φ0 − aT0)�e = 1.0 J .

The first term corresponds to the electric work, whereas the second one is the heat
exchanged.

On the other hand, charge transfer though a thermally insulated cell is an adiabatic
process, and we are interested in �T ≈ (∂T/∂e)S �e. The derivative in question is
extracted from the total differential dS = (∂S/∂T )e dT + (∂S/∂e)T de:

(
∂T

∂e

)

S

= −
(

∂S

∂e

)

T

/ (
∂S

∂T

)

e

=
(

∂φ

∂T

)

e

T

Ce
.

Here we used the Maxwell relation mentioned above and we introduced the heat
capacity at constant charge Ce = T (∂S/∂T )e. This gives

�T = aT0
Ce

�e = −2.8 × 10−3 K .
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The short-circuit process is analogous to the so-called Hirn experiment in a gas
as �U = 0: Since there is no electric load, the cell expends no work; at the same
time, the process is fast and no heat is exchanged. From the total differential dU we
obtain

(
∂T

∂e

)

U

= −
(

∂U

∂e

)

T

/ (
∂U

∂T

)

e

= aT0 − φ0

Ce
= −0.24 K/As .

The numerator contains the answer to the first question and the denominator is equal
to Ce = (∂U/∂T )e by definition.

To calculate the difference of heat capacities, we assume that the system is
described by an equation of state e = e(T ,φ) and that S = S

(
T , e(T ,φ)

)
. This gives

Cφ = T

(
∂S

∂T

)

φ

= T

[(
∂S

∂T

)

e

+
(

∂S

∂e

)

T

(
∂e

∂T

)

φ

]

.

Upon inserting the definition of Ce and the same Maxwell relation as above we find
that

Cφ − Ce = −T

(
∂φ

∂T

)

e

(
∂e

∂T

)

φ

.

If we assume that for cadmium cells e �= e(T ) then Cφ = Ce.

Problem 4.3.
Calculate the relative decrease of volumeof a CS2 sample after it is placed in a capac-
itor and exposed to an electric field of 6 × 106 V/m, given that pressure and tem-
perature are constant!Use theClausius–Mossotti relation (ε − 1)/(ε + 2) = ρC(T ),
where ρ is sample density, ε is its relative permittivity, and C(T ) is a temperature-
dependent constant. Assume that at a given temperature ε = 3 and that isothermal
compressibility is equal to 10−9 Pa−1!

The three pairs of conjugate thermodynamic variables of interest are temperature
and entropy (T and S), pressure and volume (p and V ), and electric field strength and
electric polarization (E and P). The first law reads dU = T dS − p dV + V0E dP,
where V0 is the (constant) capacitor volume. (Note that volume changes aremeasured
by the rise or drop of the level of fluid CS2 in a capillary outside the capacitor; the
volume of the fluid exposed to E is thus constant and equal to V0 at all times.) We
need to calculate �V = ∫ E

0 (∂V/∂E)T ,p dE, which involves a derivative given by a
Maxwell relation that is obtained from the thermodynamic potentialG ′ = U − TS +
pV − V0PE:

(
∂V

∂E

)

T ,p

= −V0

(
∂P

∂p

)

T ,E

= −V0ε0E

(
∂ε

∂p

)

T ,E

,
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in the last step, we used the equation of stateP = (ε − 1)ε0E. By taking the logarithm
of the Clausius–Mossotti relation and differentiating it at T = const. we find that

(
1

ε − 1
− 1

ε + 2

)

dε = dρ

ρ
= χT dp ,

where we used the pVTE equation of state dV = V (β dT − χT dp) + (∂V/∂E)T ,p

dE with dT = 0 and dE = 0; β and χT stand for the volumetric thermal expansion
coefficient and the isothermal compressibility of the sample, respectively. We now
get (∂ε/∂p)T ,E = χT (ε − 1)(ε + 2)/3 and finally

�V

V0
= −1

6
χT (ε − 1)(ε + 2)ε0E

2 = −5.3 × 10−7.

Problem 4.4.
Nitrogen, initially at 2 bar and 20 ◦C, flows through a thermally insulated valve into
a vessel where the pressure of 1 bar is maintained. Find the change of temperature
of nitrogen in this process! What would be the temperature change if the process
were adiabatic and reversible? In what temperature range is the Joule–Kelvin coef-
ficient (∂T/∂p)H negative? Use the van der Waals equation of state with the critical
parameters pc = 33.9 bar and Tc = −146.9 ◦C!

From the first law it follows that in the process in question, enthalpy is conserved
(Fig. 4.1). One needs to calculate (∂T/∂p)H . In a non-ideal gas the enthalpy

p

T

p < p

T

Fig. 4.1 Joule–Kelvin process: A temperature change is observed only if the gas is not ideal

depends both on temperature and on pressure and thus this coefficient is nonzero.
From dH = T dS + V dp and (∂S/∂p)T = −(∂V/∂T )p = −βV it follows that
(∂H/∂p)T = V (1 − βT ), whereas from the condition that enthalpy be conserved
dH = mcp dT + (∂H/∂p)T dp = 0 one has

(
∂T

∂p

)

H

= βT − 1

ρcp
.

To describe the non-ideal gas, we use the virial equation of state pV = (m/M )[RT +
B2(T )p] and differentiate it at p = const. to obtain the volumetric thermal expansion
coefficient:
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β = 1

V

(
∂V

∂T

)

p

= m

VM

(
R

p
+ dB2

dT

)

.

The virial coefficient B2(T ) is extracted from the lowest order comparison of the
virial and van der Waals equation of state: B2(T ) = b − a/RT . The Joule–Kelvin
coefficient, hence, reads

(
∂T

∂p

)

H

= 1

Mcp

(

T
dB2

dT
− B2

)

= 1

Mcp

(
2a

RT
− b

)

.

The parameters of the van derWaals equation of state a and b can be expressed using
the critical pressure pc = a/27b2 and the critical temperature Tc = 8a/27bR (Prob-
lem 1.1). The so-called inversion temperature where the Joule–Kelvin coefficient
changes sign is equal to

Ti = 2a

Rb
= 27

4
Tc = 852 K .

ForT < Ti and�p < 0 the gas is cooled in the Joule–Kelvin process and the opposite
holds for T > Ti. In our case, the fluid in question is a diatomic gas and thus cp =
7R/2M . The change of temperature is

�T ≈ 1

Mcp

(
2a

RT
− b

)

�p = −0.25 K .

A reversible adiabatic process results in a much larger temperature change: From
dS = (

mcp/T
)
dT − βV dp = 0 we have

(
∂T

∂p

)

S

= βT

ρcp
≈ 1

ρcp

which gives �T ≈ −52.6 K.

Problem 4.5.
Show that in gases where the internal energy is independent of volume, the heat
capacity at constant volume can only be a function of temperature!

If U �= U (V ), we have (∂U/∂V )T = 0 and therefore

m

(
∂cV
∂V

)

T

=
(

∂

∂V

(
∂U

∂T

)

V

)

T

=
(

∂

∂T

(
∂U

∂V

)

T

)

V

= 0

so that cV �= cV (V ).

Problem 4.6.
Does the heat capacity at constant volume in a van derWaals gas depend on volume?
Calculate the difference between the heat capacities at constant pressure and at
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constant volume! What is the form of the internal energy as a function of temperature
and volume, assuming that the heat capacity at constant volume does not depend
on temperature? Find the equation relating temperature and volume in a reversible
adiabatic process!

Usually, the van der Waals equation of state is written per kilomole of substance;
here we stick to this practice and give all extensive thermodynamic quantities per
kilomole, which is emphasized by subscriptM . From the van der Waals equation of
state (p + a/V 2

M )(VM − b) = RT we express p = RT/(VM − b) − a/V 2
M . The first

law dUM = T dSM − p dVM then gives

(
∂UM

∂VM

)

T

= T

(
∂SM
∂VM

)

T

− p = T

(
∂p

∂T

)

VM

− p = a

V 2
M

and (
∂CV,M

∂VM

)

T

=
(

∂

∂T

(
∂UM

∂VM

)

T

)

VM

= 0 .

Thus the heat capacity at constant volume does not depend on volume.
The difference of heat capacities at constant pressure and at constant volume (i.e.,

density) is equal to

Cp,M − CV,M = T

(
∂p

∂T

)

VM

(
∂VM

∂T

)

p

= RT

VM − b
βVM ,

where

β = 1

VM

(
T

VM − b
− 2a

RV 2
M

+ 2ab

RV 3
M

)−1

is the volumetric thermal expansion coefficient of the van der Waals gas (Prob-
lem 1.5).

The internal energy is given by

UM (T , VM ) = UM (T ′, V ′
M ) +

∫ T

T ′

(
∂UM

∂T

)

VM

dT +
∫ VM

V ′
M

(
∂UM

∂VM

)

T

dVM

= UM (T ′, V ′
M ) + CV,M (T − T ′) + a

(
1

V ′
M

− 1

VM

)

.

The equation of a reversible adiabatic process is found by setting

dSM =
(

∂SM
∂T

)

VM

dT +
(

∂SM
∂VM

)

T

dVM

= CV,M

T
dT + R

VM − b
dVM = 0 ,
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where (∂SM /∂VM )T = (∂p/∂T )VM . By integrating the thus obtained relationbetween
dT and dVM from T ′ and V ′

M to T and VM one finds that the adiabat reads

CV,M ln
T

T ′ = R ln
V ′
M − b

VM − b
.

Problem 4.7.
Calculate the amount of heat exchanged by 1 kg of saturated water vapor with its
environment when heated from 100 ◦C to 101 ◦C! During the process, pressure is
adjusted as needed so as to keep the vapor saturated at all times; the heat capacity
at constant pressure is equal to 1890 J/kgK.

The heat exchanged upon a reversible infinitesimal change of temperature and
pressure is given by

dQ = T dS = T

[(
∂S

∂T

)

p

dT +
(

∂S

∂p

)

T

dp

]

.

The first term can be expressed in terms of heat capacity at constant pressure,
T (∂S/∂T )p = mcp, whereas the second one depends on the thermal expansion
coefficient as seen from the appropriate Maxwell relation: T (∂S/∂p)T = −T (∂V/

∂T )p = −βTV . We describe vapor as an ideal gas so that βTV = mRT/pM . Thus

Q = m

[

cp − RT

pM

(
∂p

∂T

)

μ

]

�T .

Here the subscript μ emphasizes the derivative is to be evaluated under the constraint
of equal chemical potentials of liquid water and vapor, which are in equilibrium.
The derivative can be calculated from the Clausius–Clapeyron equation or obtained
from the steam table (see Appendix A): (∂p/∂T )μ ≈ 3900 Pa/K. Finally, we find that
Q = −4830 J, indicating that heat is emitted by the saturated vapor. This happens
because the heat emitted by vapor due to the increase of pressure exceeds the heat
needed to increase the temperature.

Problem 4.8.
The surface area of a soap film with a heat capacity of 0.01 J/K is increased by
0.2 m2. How much heat is exchanged with the environment if the expansion of the
film is isothermal at 278 K, and how much work is expended in the process? The
temperature dependence of the surface tension is given by

γ(T ) = γ0

(
Tc − T

Tc − T0

)n

,
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where n = 1.2, γ0 = 0.03 N/m, T0 = 273 K, and Tc = 647 K. What is the tem-
perature change if the expansion is adiabatic? What is the dependence of the heat
capacity at constant surface area on film area?

The pairs of variables of interest are temperature and entropy (T and S) and
surface tension and area (γ and A). The heat associated with isothermal expansion
by �A reads Q = T1�S, where at T1 = 278 K and the change of entropy �S ≈
(∂S/∂A)T �A. Using the Maxwell relation (∂S/∂A)T = −(∂γ/∂T )A and the above
functional form of γ(T ), one has

Q ≈ T1γ0n
(Tc − T1)n−1

(Tc − T0)n
�A = 5.3 mJ .

Heat is absorbed by the soap film. At the same time, the work supplied to the film
equals

W = γ(T1)�A = 5.9 mJ .

To calculate the change of temperature upon reversible adiabatic expansion we
start with the differential form of the adiabat: dS = (∂S/∂T )A dT + (∂S/∂A)T dA =
0. The first term involves the heat capacity at constant film area CA and the second
one can be recast using the above Maxwell relation. We find that

(
∂T

∂A

)

S

= −
(

∂S

∂A

)

T

/ (
∂S

∂T

)

A

=
(

∂γ

∂T

)

A

T

CA

= −γ0n

CA

T (Tc − T )n−1

(Tc − T0)n
.

If we assume that CA = const. then

�T ≈
(

∂T

∂A

)

S

�A = −0.53 K .

In order to find the dependence ofCA onfilmareaAwefirst calculate the derivative

(
∂CA

∂A

)

T

= T

(
∂

∂A

(
∂S

∂T

)

A

)

T

= T

(
∂

∂T

(
∂S

∂A

)

T

)

A

= −T

(
∂2γ

∂T 2

)

A

= −Tγ0n(n − 1)
(Tc − T )n−2

(Tc − T0)n
.

This gives

�CA ≈
(

∂CA

∂A

)

T

�A = 1.9 × 10−6 J/K � CA ,

which justifies the above assumption of constant CA in the adiabatic process.
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Problem 4.9.
The isothermal Young modulus of steel at 20 ◦C is equal to 2 × 1011 N/m2. Find the
value of the corresponding adiabatic modulus at this temperature! The linear ther-
mal expansion coefficient of steel is 10.6 × 10−6 K−1, its heat capacity at constant
pressure is 500 J/kgK, and its density is 7800 kg/m3.

As the Young modulus is defined based on uniaxial deformation of a rod, the pairs
of thermodynamic variables are the length of the steel rod and external stretching
force (� and F) and temperature and entropy (T and S). We look for the relation
between the isothermal and adiabatic Young modulus ET = (�/A)(∂F/∂�)T and
ES = (�/A)(∂F/∂�)S , respectively, where A denotes the cross section of the rod. To
this end, we spell out the total differential of entropy seen as a function of T and F

dS = mcF
T

dT +
(

∂�

∂T

)

F
dF

and T and �

dS = mc�

T
dT −

(
∂F
∂T

)

�

d�

[where we used the Maxwell relations (∂S/∂F)T = (∂�/∂T )F and (∂S/∂�)T =
−(∂F/∂T )�] and set them to 0. By combining the thus obtained adiabats we find
that (∂F/∂�)S = (cF/c�)(∂F/∂�)T , which gives

ES = cF
c�

ET .

The difference of heat capacities cF − c� is calculated just like in Problem 4.2:

cF − c� = T

(
∂F
∂�

)

T

(
∂�

∂T

)2

F
= Tα2ET

ρ
= 0.84 J/kgK ,

where α is the linear thermal expansion coefficient of steel and ρ is the density.
By assuming that cF ≈ cp = 500 J/kgK, we find that ES/ET = 1.0017 and ES =
2.0034 × 1011 N/m2.

If one were more careful one should also consider the dependence of cF on the
force F . Like in Problem 4.8 we write

(
∂cF
∂F

)

T

= T

m

(
∂2�

∂T 2

)

F
= Tα2

ρA

so that cF (F) = cF (0) + Tα2F/ρA. The relative correction to cF − c� is equal to
F/AET and is negligible for small F .
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Problem 4.10.
The internal energy of a non-ideal gas is given by U (T , V ) = CVT − a/V , where
CV = 0.83 J/K and a = 0.01 Jm3. The gas fills a sealed one-liter vessel at 1 bar
and 27 ◦C.Howmuch heat must be supplied to achieve a pressure increase of 10%?
What is the final temperature and by how much does the entropy change?

We first calculate the final temperature. From the differential dU = CV dT +
(a/V 2) dV we see that (∂U/∂V )T = a/V 2. At the same time, dU = T dS − p dV
gives (

∂U

∂V

)

T

= T

(
∂p

∂T

)

V

− p = a

V 2
,

where we used the Maxwell relation (∂S/∂V )T = (∂p/∂T )V . We recognize that
T (∂p/∂T )V − p = T 2

(
∂(p/T )/∂T

)
V and integrate the above equation, after sepa-

rating the variables, at constant volume from the initial state at temperature T ′ and
pressure p′ to the final state at temperature T and pressure p. The final temperature
is

T = T ′ p + a/V 2

p′ + a/V 2
= 54.3 ◦C .

As the temperature increase occurs at constant volume, the heat supplied to the system
is equal to the change of the internal energy:Q = �U = CV (T − T ′) = 22.7 J. The
change of entropy is

�S =
∫ T

T ′

CV

T
dT = CV ln

(
T

T ′

)

= 0.072 J/K .

Problem 4.11.
Consider a one-liter sample of cold plasma at 2000 K containing 5 × 1014 atoms.
Calculate the relative deviation of the difference of heat capacities cp − cV from the
ideal-gas result! The pressure of plasma is given by

p = nkBT − an3/2

3T 1/2
,

where a = 5.5 × 10−29 Jm3/2K1/2 and n denotes the number density of atoms.

To evaluate cp − cV = Tβ2/ρχT we need the volumetric thermal expansion coef-
ficient β and the isothermal compressibility χT of plasma. β can be obtained by an
implicit differentiation of the equation of state p = p(T , V ) with respect to temper-
ature at constant pressure. To the lowest order we have

βT = T

V

(
∂V

∂T

)

p

= 1 + 2b

3
,
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where b = an1/2/kBT 3/2 � 1. Similarly, we find that the isothermal compressibility
is

χT = − 1

V

(
∂V

∂p

)

T

= V

NkBT

(

1 + b

2

)

,

so that

cp − cV = R

M

(

1 + 5b

6

)

,

where R = NAkB. The relative correction to cp − cV is 5b/6, which amounts to 2.6%.

Problem 4.12.
At 300 K, the magnetic susceptibility of an ideal gas is equal to 4 × 10−7. At this
temperature and a pressure of 1 bar, 10 l of this gas is exposed to a magnetic
field of strength of 106 A/m. Determine the relative change of the volume of the
gas due to the magnetic field if both pressure and temperature are kept constant!
How much heat does the gas exchange with the environment? The pressure and
temperature derivatives of the susceptibility χ are equal to (∂χ/∂p)T = 10−12 Pa−1

and (∂χ/∂T )p = −10−9 K−1, respectively.

The three pairs of conjugate thermodynamic variables of interest are temperature
and entropy (T and S), pressure and volume (p and V ), magnetic field strength and
magnetic moment (H and MV ). The first law reads dU = T dS + μ0H d(MV ) −
p dV and we need to calculate

(
∂V

∂H

)

T ,p

= −μ0

(
∂(MV )

∂p

)

T ,H

= μ0VH

[

χTχ −
(

∂χ

∂p

)

T

]

,

where χ = M /H is the magnetic susceptibility and χT = 1/p is the isothermal com-
pressibility. Upon integration, we find that �V/V ≈ 1.9 × 10−6.

The heat exchanged by the gas with the environment is equal to

Q = T
∫ H

0

(
∂S

∂H

)

T ,p

dH = Tμ0

∫ H

0

(
∂(MV )

∂T

)

p,H

dH

= 1

2
μ0VH 2

[

χβ +
(

∂χ

∂T

)

p

]

.

As β = 1/T , we finally have Q = 6.3 × 10−4 J.

Problem 4.13.
Aone-liter vessel is filledwithwater containing dissolved paramagnetic ions and then
sealed soas to keep the volumeconstant. Find the changeof pressure in the vessel after
it is exposed to a magnetic field of strength 1.6 × 107 A/m at a constant temperature
of 20 ◦C! By how much do the pressure and temperature change if the vessel is



48 4 Thermodynamic Potentials

thermally insulated? Themagnetization of the ion solution is given byM (H ,T , V ) =
aH/TV with a = 10−7 m3K. The density of the solution is 103 kg/m3, its heat
capacity in absence of magnetic field is 4190 J/kgK, the compressibility is 0.46 ×
10−9 Pa−1, and the thermal expansion coefficient is 2.1 × 10−4 K−1.

As in Problem 4.2 one has dU = T dS − p dV + μ0H d(MV ). The derivative
(∂p/∂H )T ,V is obtained using a suitableMaxwell relation, starting from the equation
of stateM = M (H ,T , V ):

(
∂p

∂H

)

T ,V

= μ0

(
∂(MV )

∂V

)

T ,H

= 0 .

There is no change of pressure in the isothermal experiment.
When considering the thermally insulated vessel, one first observes that the inter-

nal energy does not depend on the field strength H :

(
∂U

∂H

)

T ,V

= T

(
∂S

∂H

)

T ,V

+ μ0H

(
∂(MV )

∂H

)

T ,V

= 0 ,

and henceU = U (T , V ); herewe took into account that (∂S/∂H )TV = μ0
(
∂(MV )/

∂T
)
H ,V and the specific form of M = M (H ,T , V ). Since in an isochoric adiabatic

process both heat exchanged and mechanical work done vanish, it follows that dU =
μ0H d(MV ) and dU = (∂U/∂T )H ,V dT = mcV dT , where cV stands for the heat
capacity of the solution in absence of magnetic field. By spelling out d(MV ), one
arrives at the adiabatic equation in the differential form

(

mcV + μ0aH 2

T 2

)

dT = μ0a

T
H dH .

The second term in the bracket on the left-hand side is just a minor correction to the
heat capacity and is neglected. The final temperature is obtained by integration:

T =
√

T ′2 + μ0aH 2

ρVcV
,

where T ′ and ρ denote the initial temperature and the density of the solution, respec-
tively. The temperature increase is rather small, amounting to �T = T − T ′ =
1.3 × 10−5 K. Finally, from the equation of isochore dV = βV dT − VχT dp +
(∂V/∂H )T ,pdH = 0 [here χT is the isothermal compressibility and β is the thermal
expansion coefficient, whereas (∂V/∂H )T ,p = 0 for the equation of state in question]
one concludes that (∂p/∂T )V = β/χT and

�p = β

χT
�T ≈ 6 Pa .
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Problem 4.14.
10 cm3 of a liquid at 20 ◦C is compressed isothermally so that the volume decreases
by 0.1%. During the process, 3 J of heat is emitted. How would the temperature
change if compression were adiabatic and reversible, with the same volume change
and initial temperature as in the isothermal case? The density of the liquid prior to
compression is equal to 0.85 kg/dm3 and its heat capacity at constant volume is
2.8 kJ/kgK. Assume that the compression does not affect the heat capacity, isother-
mal compressibility, and the thermal expansion coefficient of the liquid.

The heat emitted by the liquid upon isothermal compression at T ′ is

Q = T ′
∫ V

V ′

(
∂S

∂V

)

T

dV = T ′
∫ V

V ′

β

χT
dV = βT ′

χT
(V − V ′) ;

β andχT denote the thermal expansion coefficient and the isothermal compressibility,
respectively. Upon adiabatic compression we have

dS =
(

∂S

∂V

)

T

dV +
(

∂S

∂T

)

V

dT = β

χT
dV + mcV

T
dT = 0 .

After integrating from T ′ to T and from V ′ to V we find that the final temperature is
given by

T = T ′ exp
(

− Q

mcVT ′

)

and T − T ′ = 0.126 K.

Problem 4.15.
Calculate the pressure in a water droplet of radius of 10 μm if it carries an electric
charge equivalent to 1000 electrons! At what radius is the pressure largest? At what
relative humidity does the droplet at 20 ◦C start to grow? At 20 ◦C, the surface
tension of water is equal to 0.073 N/m and the saturated vapor pressure is 2337 Pa.

According to the Laplace law, the pressure in an uncharged droplet of radius r
exceeds the ambient pressure by pγ = 2γ/r; here γ is the surface tension. In a droplet
carrying an electric charge e, repulsion between the evenly distributed charge gives
rise to an additional electrostatic pressure pe which can be derived from the principle
of virtual workwhere the volume of the droplet is infinitesimally increased by dV and
one calculates the electrostatic work dW needed for this. We have pe = dW/dV =
�w: The correction to the pressure is equal to the change of density of the electrostatic
energyw = ED/2. From the Gauss law one finds that the strength of the electric field
inside the droplet is E = 0, whereas outside at the droplet surface it is E = e/4πε0r2.
The difference between the pressure inside the droplet and the outside pressure is
then

�p = pγ + pe = 2γ

r
+ �w = 2γ

r
− e2

32π2ε0r4
.
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In droplets of diameter of 10 μm we obtain �p ≈ 1.46 × 104 Pa so that the electro-
static contribution can be neglected. By plotting �p = �p(r) (Fig. 4.2), we see that
the pressure difference exhibits a maximum at rmax = 3

√
e2/16π2ε0γ ≈ 63 nm.
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Fig. 4.2 Pressure inside a charged water droplet (solid line) as a function of its radius: The elec-
trostatic pressure (dashed line) is negative, whereas the Laplace pressure (dotted line) is positive

In order to establish the relation between the pressure change�p inside the droplet
and the humidity of ambient air, we must consider both mechanical equilibrium and
chemical equilibrium. In the latter, the chemical potentials of liquid water in droplets
μl and of water vapor in the atmosphere μv must be equal:

μl(T , p0 + pr + �p) = μv(T , pr) .

Here p0 is the partial pressure of dry air and pr is the partial pressure of vapor in
equilibrium with droplets of diameter r. At a given temperature, liquid water under
a flat surface (r → ∞) is in equilibrium with vapor at a saturated vapor pressure p∞
or

μl(T , p0 + p∞) = μv(T , p∞) .

For pr − p∞ + �p � p0 + p∞ we have

μl(T , p0 + pr + �p) = μl(T , p0 + p∞) + pr − p∞ + �p

ρl
,

where ρl is the density of water. As vapor can be treated as an ideal gas of kilomolar
massM ,

μv(T , pr) = μv(T , p∞) + RT

M
ln

pr
p∞

.
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Now we combine these expressions, expand ln (pr/p∞) ≈ pr/p∞ − 1 for pr ≈ p∞,
and express pr:

pr = p∞ + ρv

ρl
�p .

Here ρv ≈ p∞M /RT ; we took into account that ρl 
 ρv .
If �p is much smaller than the atmospheric pressure (i.e., in large enough

droplets), the same result is obtained from the chemical equilibrium alone. Because
the ratio of water and vapor densities ρl/ρv is large, the mechanical equilibrium is
then only slightly violated.

For 10 μm droplets that carry 1000 elementary charges, we obtain pr ≈
2337.25 Pa; here we used ρl and ρv from the steam table (Appendix A). At 20 ◦C,
these droplets are in equilibrium with air of relative humidity of

η = pr
p∞

= 100.01% .

If the humidity is larger than this, the 10μmdroplets begin to grow since the chemical
potential of water vapor exceeds the chemical potential of water in them. If the vapor
pressure is raised above pr(rmax) ≈ 30.1 Pa, which at 20 ◦C corresponds to a relative
humidity of 101.3%, droplets of all sizes grow. (The last result was obtained by
assuming that the above approximations are justified, which may not necessarily be
the case.)

Problem 4.16.
A vessel contains liquid water and vapor at 100 ◦C. Calculate the change of the
partial pressure of vapor after the vessel is filled with an inert gas of a partial
pressure of 20 bar. The inert gas does not dissolve in water. The dependence of the
density of water on pressure is given by

ρl(p) = ρ0
[
1 + χT (p − p′

s)
]
,

where ρ0 = 959 kg/m3 and χT = 0.46 × 10−9 Pa−1 are the density and the isother-
mal compressibility of water at 100 ◦C, respectively, whereas p′

s = 1.01 bar is the
saturated vapor pressure at this temperature.

In the reference state, the chemical potentials of liquid water and vapor are equal:
μl(p′

s,T ) = μv(p′
s,T ). After the atmospheric pressure is increased, the chemical

potential of water is increased by �μl = ∫ ps+p
p′
s

ρ−1
l (p) dp, where ps denotes the new

saturated vapor pressure and p is the pressure of the inert gas. The change in the
chemical potential of water vapor is �μv = (RT/M ) ln

(
ps/p′

s

)
. In equilibrium one

has μl(ps + p,T ) = μv(ps,T ) and after calculating�μl for the above ρl(p), we have

1

ρ0χT
ln

(
1 + χT

(
ps + p − p′

s

)) = RT

M
ln

ps
p′
s

.
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This equation can be solved approximately by assuming that the change of vapor
pressure is small compared to the pressure of the inert gas, i.e., ps − p′

s � p. Then

ps = p′
s (1 + χT p)

M /RTρ0χT = 1.022 bar .

Problem 4.17.
Assume that the equation of state for solid iron is given by

V = m

ρ
(1 + βT − χT p)

and that its heat capacity is given by

cV = 3R

M

T 3

T 3
D + T 3

.

Derive the equation of reversible adiabatic process! Calculate the stress gener-
ated in an initially unconstrained thermally insulated sample after it is isotrop-
ically compressed, which gives rise to an increase of temperature from 300 to
310 K! Here ρ = 7800 kg/m3 is the density of iron, β = 3 × 10−5 K−1 is the ther-
mal expansion coefficient, χT = 3.6 × 10−12 Pa−1 is the isothermal compressibility,
M = 55.5 kg/kmol is the kilomolarmass, and TD = 470K is theDebye temperature.

We start with the total differential of entropy which reads dS = (∂S/∂T )V dT +
(∂S/∂V )T dV = (mcV /T ) dT + (β/χT ) dV . With the above form of cV and con-
stant β and χT , dS can be integrated to obtain a closed expression for entropy
S(T , V ) = (mR/M ) ln

(
1 + (T/TD)3

) + (β/χT )(V − V0), where V0 = V (T = 0,
p = 0). After inserting the equation of state and dividing by m, we have

s(T , p) = R

M
ln

(

1 +
(

T

TD

)3
)

+ β2

ρχT
T − β

ρ
p

so that an adiabatic process in solid iron is described by

p2 = p1 + ρR

βM
ln

1 + (T2/TD)3

1 + (T1/TD)3
+ β

χT
(T2 − T1) .

The stress in the adiabatically compressed sample is 9 × 108 Pa.

Problem 4.18.
Calculate the isothermal and adiabatic compressibility of black-body radiation at
20 ◦C! Recall that for radiation p = u/3 and u = 4σT 4/c, where p is the pressure,
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u is the volumetric density of internal energy, σ is the Stefan constant, and c is the
speed of light in vacuum.

Since the radiation pressure depends solely on temperature, it remains constant
during an isothermal volume change; therefore, the isothermal compressibility of
radiation is infinite.

Adiabatic compressibility, on the other hand, is obtained from dU = T dS − p dV
which gives

dS = 16σT 3

3c
dV + 16σT 2V

c
dT .

We set dS = 0 to find that dV/V = −3 dT/T . From the equation of state we have
dp/p = 4 dT/T , which leads to dV/V = − (

9c/16σT 4
)
dp and

χS = 9c

16σT 4
.

At room temperature, χS = 4.04 × 105 Pa−1.

Problem 4.19.
Derive the adiabatic equation for black-body radiation! What was the density of the
universe at a time when the temperature of the cosmic background radiation was
3000 K relative to the present value which corresponds to a temperature of 3 K?

Problem4.18 shows that in an adiabatic process for black-body radiation dV/V =
−3 dT/T so that

TV 1/3 = const.

By taking into account that p ∝ T 4, this result can be recast as

pV 4/3 = const.

The first relation gives V ′/V = ρ/ρ′ = (
T/T ′)3 which implies that at the time when

the temperature of radiation was 3000 K, the density of the universe was 109-times
larger than today.

Problem 4.20.
What is the highest pressure at which nitrogen is cooled upon Joule–Kelvin expan-
sion? What is the volume at the extreme inversion point? Assume that nitrogen can
be described by the second Dieterici equation of state

(

p + a

V 5/3
M

)

(VM − b) = RT
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and first rewrite it in a dimensionless form! The critical parameters for nitrogen are
pc = 34.5 bar, VMc = 89.6 l/kmol, and Tc = 125.9 K.

In the critical point (∂p/∂VM )T = (
∂2p/∂V 2

M

)
T = 0. These conditions, together

with the equation of state, result in the following system of equations: pVM −
pb + a/V 2/3

M − ab/V 5/3
M = RT , p − 2a/3V 5/3

M + 5ab/3V 8/3
M = 0, and 10a/3V 8/3

M −
40ab/3V 11/3

M = 0, from where we extract VMc = 4b, pc = a/48/3b5/3, and Tc =
15a/48/3Rb2/3. By introducing reduced variables P = p/pc, V = VM /VMc, and
T = T/Tc, we rewrite the equation of state in the dimensionless form:

(

P + 4

V5/3

)

(4V − 1) = 15T .

The Joule–Kelvin coefficient (∂T/∂p)H = (βT − 1)/ρcp vanishes for β = 1/T ,
i.e., for (

∂V
∂T

)

P
= V

T .

This derivative is obtained by differentiating the equation of state: −20(4V −
1)/3V8/3 + 4

(
P + 4/V5/3

) = 15 (∂T /∂V)P . From here we calculate the inversion
temperature Ti = 4 (4V − 1)2 /9V5/3 and the inversion curve

Pi = 16

3V2/3

(

5 − 2

V

)

.

The inversion curve plotted in Fig. 4.3 is negative for V < 2/5, whereas for
large V it decreases as 80/3V2/3. Evidently, it has an extreme in between these

15
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2
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20

Fig. 4.3 Inversion curve for the second Dieterici equation of state (solid line) as well as for the
first Dieterici (dotted line) and the van der Waals equation of state (dashed line)
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two regimes; the extreme is located at V = 1 which gives Pi = 16 and Ti = 4. The
extreme inversion point hence corresponds to a pressure of 16 pc = 552 bar, the
kilomolar volume of VMc = 89.6 l/kmol, and a temperature of 4Tc = 504 K.

A similar analysis can be done for the first Dieterici equation. In this case, the
inversion curve in PV plane reads

Pi = 4

V exp

(

2 − 1

4V − 2

)

withTi = 8 − 4/V . The extreme inversionpoint is located at a pressure of 4 exp(3/2)pc
= 17.93 pc, a kilomolar volume of VMc, and a temperature of 4Tc. The corresponding
results for the van der Waals gas are

Pi = 9

V

(

2 − 1

V

)

and Ti = 3 (3 − 1/V)2 /4. Here the extreme inversion point is found at a pressure of
9pc, and a kilomolar volume of VMc, and a temperature of 3Tc.

Problem 4.21.
At what temperature does the Joule–Kelvin coefficient of water vapor change sign if
vapor is described by the Callendar equation of state

VM − b = RT

p
− a

T 10/3
,

where VM denotes the kilomolar volume, b = 0.03 m3/kmol, and a = 6.8 × 106 m3

K10/3/kmol?

The Joule–Kelvin coefficient is (∂T/∂p)H = (βT − 1)/ρcp (Problem 4.4) and
changes sign when βT − 1 = RT/pVM + 10a/3VMT 10/3 − 1 = 0. Thus the inver-
sion temperature is equal to

Ti =
(
13a

3b

)3/10

= 498 K .

Problem 4.22.
A sealed vessel contains 0.1 l of rarefied gas consisting of polar molecules. Each
molecule carries an electric dipole moment of 2 × 10−27 Asm. How much work
is expended at 20 ◦C as the electric field strength is increased from 107 V/m to
108 V/m? How much heat is exchanged in the process? The pressure of the gas is
1 mbar and its polarization is given by

P = npe

(

coth
peE

kBT
− kBT

peE

)

,
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where n is the number density of the molecules, pe is the electric dipole moment, and
E is the electric field strength.

As the process takes place at constant volume, the first law dU = T dS +
E d(VP) − p dV includes only heat and electrical work. The electrical work is

W =
∫ E2

E1

EV dP = V
∫ E2

E1

E

(
∂P

∂E

)

T ,V

dE ,

where we took into account that the volume does not depend on the electric field
strength, which can be deduced from the total differential of the Gibbs free energy
dG ′ = −S dT − VP dE + V dp. This gives (∂V/∂E)T ,p = −(

∂(VP)/∂p
)
T ,E : The

right-hand side is the derivative of the dipole moment of the gas with respect to
pressure and is equal to 0. At the given pe,E, and T , we can replace the equation of
state P(E,T ) by its low-temperature approximation npe (1 − kBT/peE); as the gas
is rarefied, we also use p = nkBT . Thus we obtain

W = nkBTV
∫ E2

E1

dE

E
= pV ln

E2

E1
= 23 mJ .

The heat exchanged is given by

Q =
∫ E2

E1

T dS = T
∫ E2

E1

(
∂S

∂E

)

T ,V

dE ,

where the derivative (∂S/∂E)T ,V = (
∂(VP)/∂T

)
E,V

follows from the differen-
tial dG ′′ = −S dT − VP dE − p dV . For the above equation of state where P =
P(E/T ), (∂P/∂E)T ,V = −(T/E) (∂P/∂T )E,V so that the heat exchanged is exactly
equal but opposite to the work expended: Q = −W = −23 mJ. Thus the internal
energy remains unchanged.

Problem 4.23.
A bakelite cuboid is placed in a plate capacitor, filling exactly all its volume. The
cuboid is pulled from its initial position such that only half of it remains in the
capacitor and released. Find the frequency of oscillations of the cuboid! The plates
measure 5 cm × 20 cm and are 1 cm apart, the voltage between them is 3000 V,
the relative permittivity of bakelite is 4, and its density is 1200 kg/m3. Assume that
friction is negligible and disregard any effects related to the finite size of the capacitor.

We first identify the appropriate thermodynamic potential. The differential of the
Helmholtz free energy of the cuboid is given by dF = −S dT + E d(VP) and since
polarization is proportional to the strength of the electric field, P = (ε − 1)ε0E, we
have

F(T ,E) = F(T , 0) + V

2
(ε − 1)ε0E

2 ,
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where V is the volume of the cuboid within the capacitor. This expression includes
the work done by the electric field by polarizing the cuboid but not the interaction of
the induced polarization with the field given by Fint = −VE · P = −VEP because
P and E are parallel. The total free energy of the dielectric cuboid and the electric
field is

F ′(T ,E) = F(T ,E) + Fint = F(T , 0) − V

2
(ε − 1)ε0E

2.

The force acting on the cuboid is equal to F = − (
∂F ′/∂y

)
T ,E , where y is the dis-

placement of the cuboid from the center of the capacitor (Fig. 4.4). We further have
V = A(a − y), where A is the area of the cross section of the cuboid and a is its
length. Thus

F = −A

2
(ε − 1)ε0E

2.

F

y

Fig. 4.4 Force on a dielectric cuboid in a capacitor pushes the body toward center (dashed line)

The force points toward the center of the capacitor and does not depend on y. Conse-
quently, the oscillations of the cuboid are not harmonic—instead, its motion toward
equilibrium is characterized by constant acceleration.We have y0 = F t20/32m, where
y0 and t0 are the amplitude and the period of oscillations, respectively, and m is the
mass of the cuboid. This gives

t0 =
√

64my0
A(ε − 1)ε0E2

= 25.4 s

and the corresponding angular frequency is 0.248 s−1.

Problem 4.24.
A sample containing 10 g of castor oil is placed between the plates of a capacitor and
the voltage is slowly increased from 0 to 108 V/m at constant pressure. Calculate the
change of entropy of the oil! The density, thermal expansion coefficient, and relative
permittivity of the oil are 800 kg/m3, 0.97 × 10−3 K−1, and 4.62, respectively, and
ε−1 (∂ε/∂T )p = −0.0107 K−1.

Since the voltage is increased slowly, the process is isothermal. The change of
entropy �S = ∫ E

0 (∂S/∂E)T ,p dE depends on the derivative (∂S/∂E)T ,p deduced
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from the total differential of the Gibbs free energy G ′ = U − TS + pV − VEP.
This gives

(
∂S

∂E

)

T ,p

=
(

∂ (VP)

∂T

)

E,p

= V (ε − 1)ε0

[

β + 1

ε − 1

(
∂ε

∂T

)

p

]

E

and finally

�S = m(ε − 1)ε0
2ρ

[

β + 1

ε − 1

(
∂ε

∂T

)

p

]

E2 = −2.54 × 10−2 J/K .

If we neglect the expansion of oil, the result is �S = −2.73 × 10−2 J/K.

Problem 4.25.
A thin layer of globular proteins on the surface of water behaves like a two-
dimensional gas. At a temperature T , the surface pressure of the layer is given
by

γ = NkBT
A

(A − Nα)2
,

where A is the surface area of the layer, N is the number of proteins, and α =
10−14 cm2. Calculate the surface thermal expansion coefficient and the isothermal
compressibility of a layer of A = 5 cm2 and N = 3 × 1014 at 20 ◦C! In addition,
find the difference of heat capacities Cγ − CA as well as the adiabatic compressibility
of the layer! Assume that CA = NkB.

The thermal expansion coefficient of the layer is given by

β = 1

A

(
∂A

∂T

)

γ

= 1

T

A − Nα

A + Nα
= 8.5 × 10−4 K−1

and the isothermal compressibility is equal to

χT = − 1

A

(
∂A

∂γ

)

T

= 1

NkBT

(A − Nα)3

A(A + Nα)
= 16.5 m/N.

The difference of heat capacities is calculated like in Problem 4.2:

Cγ − CA = T

(
∂γ

∂T

)

T

(
∂A

∂T

)

γ

= NkB
A2

A2 − (Nα)2

= 6.5 × 10−9 J/K.

The adiabatic compressibility is obtained from its isothermal counterpart: χS =
(CA/Cγ)χT ; see Problem 4.9. Therefore
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χS = 1

NkBT

(A − Nα)4

A
[
2A2 − (Nα)2

] = 6.4 m/N.

The equation of state considered here represents a gas consisting of hard disks, α
being related to the non-ideal nature of the gas. Thus for α → 0 one should recover
the ideal-gas behavior and indeed in this limit β = 1/T , χT = A/NkBT = 1/γ, and
Cγ − CA = NkB. (Here kB = R/NA, where NA is the Avogadro number.)

Problem 4.26.
The length �of a liquid-crystal elastomer band stretchedby a forceF at a temperature
T is given by

�

�0
= 1 + F

F0
+

(

1 − F
F0

)

tanh

(

1 − T

T0

)

,

where �0 = 0.4m,T0 = 80 ◦C,andF0 = 2N.The validity of this simple phenomeno-
logical model is limited to F � F0. Calculate the thermal expansion coefficient of
the band at T = 80 ◦C and F = 1 N!—A stretching force of 1 N is applied isother-
mally and reversibly at 80 ◦C to a band that is initially free of constraints. Howmuch
heat is exchanged with the environment in the process? At what temperature is the
heat exchanged during such a process maximal? Assume that this temperature does
not differ significantly from T0.

The thermal expansion coefficient is equal to

α = 1

�

(
∂�

∂T

)

F
= 1

T0

�0

�

( F
F0

− 1

)

cosh−2

(

1 − T

T0

)

= −9.4 × 10−4 K−1

and is negative, which is a signature of rubber elasticity.
When the elastomer band is stretched isothermally and reversibly, the heat

exchanged with the environment at T = T0 is

Q = T
∫ F

0

(
∂S

∂F

)

T

dF = T
∫ F

0

(
∂�

∂T

)

F
dF

= −�0

(

F − F2

2F0

)
T

T0
cosh−2

(

1 − T

T0

)

= −0.30 J.

Heat is released by the band; the phenomenon is known as the elastocaloric effect.
From the above equations we see that the heat exchanged depends on the temperature
at which the isothermal stretching is performed. Themaximumof the heat exchanged
is determined by dQ/dT = 0, which leads to a transcendental equation for T :

1 + 2T

T0
tanh

(

1 − T

T0

)

= 0.
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As we expect that the maximum is at a temperature that is not too different from T0,
we expand the hyperbolic tangent to first order and obtain a quadratic equation for
T/T0 (

T

T0

)2

− T

T0
− 1

2
= 0 ,

with the physically meaningful solution T/T0 = (1 + √
3)/2 ≈ 1.3660 or T =

209 ◦C. We notice that the obtained temperature is actually not very close to T0
as assumed, yet it still agrees well with the exact solution of the transcendental
equation which is T/T0 ≈ 1.3797.



Chapter 5
Phase Transitions

Problem 5.1.
At 0 ◦C and 1 bar, the heat of fusion of ice is 336 kJ/kg and its density is 917 kg/m3;
the saturated water vapor pressure at 0 ◦C is 6.1 mbar and the heat of vaporization
is 2.50 MJ/kg. Using these data, calculate the location of the triple point of water!

In the vicinity of the triple point, phase coexistence in the temperature–pressure
phase diagram can be represented by straight lines of slopes given by the Clausius–
Clapeyron equation, the reference points being 0 ◦C and 1 bar for the coexistence
of ice and liquid water and 0 ◦C and 6.1 mbar for the coexistence of liquid water
and vapor. (As one can deduce from Fig. 5.1, the latter can only be metastable given
that it is located in the region where ice turns out to be the only stable phase.) The
ice–water coexistence is described by

p

T

liquid
water

ice

vapor

triple
point

critical
point

Fig. 5.1 Phase diagram of water. Since the density of ice is lower than that of liquid water, the
slope of the water–ice coexistence line is negative
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psl(T ) = psl(T0) + dpsl
dT

∣
∣
∣
∣
T=T0

(T − T0)

= psl(T0) + q f

T0 (1/ρl − 1/ρs)
(T − T0)

whereas at the water–vapor coexistence

plv(T ) = ps(T0) + dplv
dT

∣
∣
∣
∣
T=T0

(T − T0)

= ps(T0) + qv

T0 (1/ρv − 1/ρl)
(T − T0)

≈ ps(T0) + ps(T0)Mqv

RT 2
0

(T − T0) .

Here, we took into account that the density of vapor is much lower than that of water
and we expressed it using the ideal-gas equation of state. The phase coexistence
lines meet at 0.0075 ◦C and 6.1 mbar. Due to air dissolved in water which lowers
the melting point, the true triple point of water is at a slightly higher temperature of
0.01 ◦C.

Problem 5.2.
A vessel contains 2 l of liquid water and 1 l of vapor at 20 ◦C. Calculate the
volumetric thermal expansion coefficient of the system if water–vapor coexistence is
maintained! The equation of state for liquid water reads

Vl = ml

ρ0
[1 − χl p + βl (T − T0)] ,

where ρ0 = 998 kg/m3, χl = 4.6 × 10−10 Pa−1, βl = 2.06 × 10−4 K−1, and T0 =
273 K. The heat of vaporization is 2.45 MJ/kg, the kilomolar mass is 18 kg/kmol,
and the saturated vapor pressure at 20 ◦C is 23.4 mbar.

Because the system is rather far from the critical point, the density of water ρl is
much higher than that of vapor ρv . In this case, the Clausius–Clapeyron equation can
be simplified to read

dp

dT
= qv

T (1/ρv − 1/ρl)
≈ ρvqv

T
= pMqv

RT 2
.

This gives the temperature dependence of pressure, where liquid water and vapor
coexist. Now we consider the variation of vapor volume Vv with temperature:

(
∂Vv

∂T

)

μ

=
(

∂Vv

∂T

)

p

+
(

∂Vv

∂ p

)

T

dp

dT
= Vv

T

(

1 − Mqv

RT

)

.
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(The subscript μ indicates that the chemical potentials of water and vapor are equal.)
This derivative is negative because upon heating, the volume decrease due to the
increase of saturated pressure exceeds the volume increase observed at constant
pressure. For liquid water, we have

(
∂Vl

∂T

)

μ

=
(

∂Vl

∂T

)

p

+
(

∂Vl

∂ p

)

T

dp

dT
= ml

ρ0
βl

(

1 − χl

βl

pMqv

RT 2

)

.

After evaluating the two derivatives, we find that (∂Vl/∂T )μ � (∂Vv/∂T )μ and one
has

βμ = 1

Vv + Vl

(
∂ (Vv + Vl)

∂T

)

μ

≈ 1

Vv + Vl

(
∂Vv

∂T

)

μ

= −0.0193 K−1.

Problem 5.3.
A vertical 11 cm-tall sealed tube contains a 10 cm column of water and air at
1 bar; the temperature is 0 ◦C. Find the thickness of ice formed after the tube is
cooled by 10−4◦C! The densities of ice and water are 917 kg/m3 and 1000 kg/m3,
respectively, and the heat of fusion is 336 kJ/kg. Assume that ice does not stick to
the tube.

Although the final temperature of the system is below 0 ◦C, not all of the water
freezes because ice has a larger specific volume than water. As a result, the volume
of air is decreased upon cooling and consequently the pressure inside the tube is
increased. Mass conservation upon phase transition gives hlρl = hsρs , where hl and
hs denote the height of the columns of water that freezes and the thickness of ice,
respectively (Fig. 5.2); ρl and ρs are the densities of water and ice, respectively. For
the air column, we have (p + �p)(hg − �hg)/(T + �T ) = phg/T (where hg is

water

ice

air air h hg g

water

hshl

final
state

initial
state

hg

Fig. 5.2 Given the small compressibility of liquid water, the total volume of air and ice upon
cooling equals the combined initial volume of air and of water that freezes
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its initial height and �hg is the change of height upon cooling) or approximately
(p + �p)(hg − �hg) = phg since the temperature change is small. Thus

�hg = hg
�p/p

1 + �p/p
.

As nothing happens to water that does not freeze, the combined height of the column
of water that does freeze and of the air column is conserved: hl + hg = hs + hg −
�hg. Therefore

�hg = hs

(

1 − ρs

ρl

)

.

Finally, we find that

hs = hg

1 − ρs/ρl

�p/p

1 + �p/p
= 1.61 mm ,

with �p = q f �T
/

[T (1/ρl − 1/ρs)] according to the Clausius–Clapeyron equa-
tion.

Problem 5.4.
What is the derivative of the heat of vaporization of water with respect to temperature
close to the boiling point at standard atmospheric pressure? At 100 ◦C, the heat
capacities of water vapor and liquid water at constant pressure are 1890 J/kgK and
4210 J/kgK, respectively.

We start with a more general discussion of the temperature dependence
of the latent heat given by q = T (s2 − s1), where s1 and s2 are the specific
entropies of the low- and the high-temperature phase, respectively. From
here, dq/dT = s2 − s1 + T (ds2/dT − ds1/dT ) = q/T + T (ds2/dT − ds1/dT ).
Since also ds = (∂s/∂T )p dT + (∂s/∂ p)T dp = (cp/T ) dT − m−1 (∂V/∂T )p dp
and m−1 (∂V/ ∂T )p = β/ρ, we obtain dq/dT = q/T + cp2 − cp1 − T (β2/ρ2−
β1/ρ1) dp/dT. Along the phase equilibrium we have dp/dT = q/ [T (1/ρ2 − 1/ρ1)],
hence

dq

dT
= q

T
+ cp2 − cp1 −

(
β2

ρ2
− β1

ρ1

)
q

1/ρ2 − 1/ρ1
.

For liquid–gas transition far from the critical point, ρ2 � ρ1 holds and, in a rar-
efied gas, β2 ≈ 1/T can further be assumed. In this case dq/dT = cp2 − cp1. For
the water–vapor transition close to the boiling point at 1 bar we obtain dq/dT =
−2320 J/kgK.

Problem 5.5.
A tall vertical tube at 250 K is filled with a column which is solid at the bottom,
whereas its top part is liquid; the heat of fusion is 147 kJ/kg. Upon cooling the
column by 10−3 K, the solid–liquid interface moves by 1 m. Does it move up or
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down? What is the ratio of densities of the liquid and the solid phase? Assume that
thermal expansion is negligible.

Given that the solid phase is found at the bottom of the tube where, due to gravity, it
is exposed to a higher pressure than the liquid phase at the top, the phase coexistence
curve in the phase diagram is characterized by dp/dT > 0. Therefore, upon cooling
by �T , the equilibrium is shifted to a lower pressure and thus the interface moves up
by �h (Fig. 5.3). The density ratio is obtained from the Clausius–Clapeyron equation
which reads

dp

dT
= q f

T
(

ρ−1
l − ρ−1

s
) = ρlg�h

�T
,

where q f stands for the heat of fusion, ρl and ρs denote the densities of the liquid and
the solid phase, respectively, g is the gravitational acceleration, and T is temperature.
We find that

ρl

ρs
= 1 − q f

g�h

�T

T
= 0.94 .

Fig. 5.3 Tall column in gravitational field: Upon cooling, the liquid-solid interface moves up by
�h

Problem 5.6.
Upon heating a sample of iron at 1 bar, one observes a transition from phase α to
phase γ at 900 ◦C. As the sample is further heated at constant pressure, it undergoes
a re-entrant transition to phase α at 1400 ◦C. The heat capacity of phases α and γ
are 775 J/kgK and 690 J/kgK, respectively. Calculate the heat of fusion of the two
transitions!
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Assume that iron is heated from T1 = 900 ◦C to T2 = 1400 ◦C in two ways: In the
first case, the sample remains in phase α, whereas in the second it first experiences a
transition to phase γ at T1 and then it is heated to T2 where it switches back to phase
α. In the first case, the change of enthalpy is given by

Hα(T2) − Hα(T1) = mcα
p (T2 − T1) ,

and the change of entropy is

Sα(T2) − Sα(T1) = mcα
p ln

T2

T1
;

here cα
p stands for the heat capacity of phase α and m is the mass of the sample. In

the second case we have

Hα(T2) − Hα(T1) = mq(T1) + mcγ
p (T2 − T1) + mq(T2)

and

Sα(T2) − Sα(T1) = mq(T1)

T1
+ mcγ

p ln
T2

T1
+ mq(T2)

T2
,

where q(T ) is the heat of fusion and cγ
p is the heat capacity of phase γ. Both enthalpy

and entropy are functions of state; as a consequence, the change of these quantities
does not depend on how the sample was heated. Therefore

q(T1) = T1
(

cα
p − cγ

p

)
[
T2 ln (T1/T2)

T1 − T2
− 1

]

;

for q(T2) we obtain the same expression with indices 1 and 2 interchanged. Finally
we have q(T1) = 18.7 kJ/kg and q(T2) = −23.7 kJ/kg.

Problem 5.7.
Calculate the heat of vaporization of the van der Waals fluid at T = 0!

Mechanical equilibrium requires that the pressures of the liquid and the vapor
phase be equal: Pv = Pl or 8T /(3Vl − 1) − 3/V2

l = 8T /(3Vv − 1) − 3/V2
v ; here

we use the dimensionless form of the van der Waals equation of state (Problem 1.1).
At very low temperatures, we haveVl ≈ 1/3 andVv � 1, hence this condition can be
replaced by 8T /(3Vl − 1) − 27 = 0. From here it follows that Vl − 1/3 ≈ 8T /81.

The Maxwell rule which determines the saturated vapor pressure states that

∫ Vv

Vl

P dV = Ps(Vv − Vl) .
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The integral on the left-hand side is equal to (8T /3) ln
(

(3Vv − 1)/(3Vl − 1)
) +

3 (1/Vv − 1/Vl) ≈ (8T /3) ln
(

3Vv/(3Vl − 1)
) − 9 because Vl ≈ 1/3 and Vv � 1,

whereas the right-hand side is approximately equal to 8T /3 and thus approaches
0 at low temperatures. Thus Vv ≈ (Vl − 1/3) exp(27/8T ), and, upon inserting the
relation Vl − 1/3 ≈ 8T /81 obtained from the condition of mechanical equilibrium,
we finally have Vv = (8T /81) exp (27/8T ) (Fig. 5.4). Hence

Ps ≈ 8T
3Vv

= 27 exp

(

− 27

8T

)

,

which is illustrated in Fig. 5.5. At this point, the heat of vaporization is just a step
away. By substituting Vv − Vl ≈ Vv into the Clausius–Clapeyron equation, we find
that

qv ≈ pcVMc

M
T Vv

dPs

dT = 9pcVMc

M
,

which agrees well with the exact numerical result (Fig. 5.6).

1

10

Vv, Vl

0.1
0

T

100

0.2 0.6 0.8 10.4

Fig. 5.4 Liquid–gas coexistence in the van der Waals fluid: Exact reduced volumes of the gas and
the liquid phase plotted vs. reduced temperature (solid line) and the low- and high-temperature
approximations (dashed lines). The behavior close to T = 1 is discussed in Problem 5.8, which
also applies to Figs. 5.5 and 5.6

Problem 5.8.
Calculate the heat of vaporization for a van derWaals fluid close to the critical point!
What is the heat of vaporization of carbon dioxide at 25 ◦C? The critical pressure is
73 bar, the critical kilomolar volume is 0.095 m3/kmol, and the critical temperature
is 31 ◦C.

We write P = 1 + X , V = 1 + Y , and T = 1 + Z , where X ,Y,Z � 1, and
recast the dimensionless van der Waals equation of state from Problem 1.1 as
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Ps

0
T

0.2 0.6 0.80.4

0.8

0.4

0

0.2

1

0.6

1

Fig. 5.5 Saturated vapor pressure in a van der Waals gas (solid line) and the corresponding low-
and high-temperature approximations (dashed lines). The low-temperature approximation fits the
exact Ps(T ) quite well at all temperatures—even at the critical temperature, the relative difference
is merely 7.6%

8

4

Qv

0
0 0.2 0.6 0.8

2

0.4
T

10

6

1

Fig. 5.6 Heat of vaporization of the van der Waals fluid expressed in reduced units where Qv =
Mqv/pcVMc (solid line) and its low- and high-temperature approximations (dashed lines)

X = −3

2
Y3 + 4Z − 6YZ .

Mechanical equilibrium requires that Xl = Xv = Xs or −3Y3
l /2 − 6YlZ = −3Y3

v /

2 − 6YvZ , and in terms of reduced variables, the chemical equilibrium is given by
∫ Yv

Yl
XdY = Xs(Yv − Yl). After we evaluate the integral, we obtain −(3/8)(Y4

v −
Y4
l ) + 4Z(Yv − Yl) − 3Z(Y2

v − Y2
l ) = Xs(Yv − Yl) or Xs = −(3/8)(Y2

v + Y2
l )

(Yv + Yl) + 4Z − 3Z(Yv + Yl). The saturated vapor pressure must be equal to
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X (Yl) = −3Y3
l /2 + 4Z − 6YlZ and X (Yv) = −3Y3

v /2 + 4Z − 6YvZ . The sum
of the ensuing two equations reduces to (Yv − Yl)

2(Yv + Yl) = 0. Apparently,
Yv = −Yl so that Yl = −2

√−Z , Yv = 2
√−Z , and Xs = 4Z or

Vl = 1 − 2
√

1 − T ,

Vv = 1 + 2
√

1 − T , and

Ps = 4T − 3 .

Figure 5.4 shows Vl and Vv as functions of temperature and Ps is plotted in Fig. 5.5.
These results can be used to calculate the critical exponent for the order parameter,
which is given by the difference of the densities of the liquid and gas phase in
coexistence. We have ρl − ρv ∝ V−1

l − V−1
v ∝ √

Tc − T so that the critical exponent
β = 1/2, which agrees with the mean-field approximation.

The heat of vaporization follows from the Clausius–Clapeyron equation and reads

qv = pcVMc

M
T (Vv − Vl)

dPs

dT = 16
pcVMc

M

T

Tc

√

1 − T

Tc
;

its temperature dependence is depicted in Fig. 5.6. The heat of vaporization for carbon
dioxide at 25 ◦C is 34.7 kJ/kg.

Problem 5.9.
Calculate the critical exponent characterizing the difference of heat capacities cp −
cV in the van derWaals fluid if the critical point is approached at the critical pressure!
How does the result change if the critical point is approached at the critical volume?
Calculate the adiabatic compressibility at the critical point!

Like in Problem 5.8 we put P = 1 + X , V = 1 + Y , and T = 1 + Z with X ,Y ,
and Z � 1. By inserting these expressions into the dimensionless van der Waals
equation of state, we have

[

1 + X + 3/(1 + Y)2
]

(2 + 3Y) = 8(1 + Z). By taking
into account that (1 + u)−2 = 1 − 2u + 3u2 − 4u3 + . . . and keeping the terms up
to third order in Y , we are left with

3Y3 + (2 + 3Y)X − 8Z = 0 .

(One can quickly verify that the above approximate form of the van der Waals
equation of state is equivalent to the one in Problem 5.8.) At the critical temper-
ature, the difference of heat capacities cp − cV = (T/m) (∂ p/∂T )V (∂V/∂T )p is
equal to (3R/8M) (∂P/∂T )V (∂V/∂T )P ; here we used the relation pcVMc/MTc =
3R/8M . From the approximate form of the equation of state, we have (∂P/∂T )V =
8/(2 + 3Y) and (∂V/∂T )P = 8/

[

3(X + 3Y2)
]

so that, in turn, cp − cV ≈
8R/M(2 + 3Y)(X + 3Y2).

At the critical pressure X = 0, Y = (8Z/3)1/3 and thus
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cp − cV ≈ 4R

3MY2
∝ Z−2/3 ∝ (T/Tc − 1)−2/3

so that the critical exponent of interest is 2/3.
On the other hand, at the critical volume Y = 0 we have X = 4Z and

cp − cV ≈ R

MZ ∝ Z−1 ∝ (T/Tc − 1)−1.

In this case the critical exponent is equal to 1.
The adiabatic compressibility is calculated from χS = (cV /cp)χT . Given that

cp − cV diverges at the critical point, cp/cV can be estimated by
(

cp − cV
)

/cV =
(8R/McV )

[

(2 + 3Y)(X + 3Y2)
]−1

, whereas the isothermal compressibility isχT =
p−1
c (2 + 3Y)/

[

3(X + 3Y2)
]

. Therefore

χS ≈ McV
24Rpc

(2 + 3Y)2 ,

which does not diverge at the critical point.

Problem 5.10.
Explore the behavior of magnetization and heat capacity near the ferromagnetic–
paramagnetic transition within the Landau theory! Calculate the critical exponents
of the order parameter and the heat capacity!

The Landau Gibbs free energy for magnetic systems per unit mass (below referred
to as the free energy for brevity) is given by

g(M, T ) = g(0, T ) + a(T − Tc)
M2

2
+ b

M4

4
,

where g(0, T ) is the free energy in absence of magnetization M at a temperature
T , a and b are positive constants, and Tc is the phase transition temperature (Fig.
5.7). The equilibrium magnetization corresponds to the minimum of the free energy
given by (∂g/∂M)T = a(T − Tc)M + bM3 = 0. This equation has two solutions:
M = 0 represents the paramagnetic phase with the free energy of g(0, T ), whereas
M = ±√

a(Tc − T )/b represents the ferromagnetic phase which exists only for
T < Tc and where the free energy is g(0, T ) − a2(T − Tc)2/4b. The paramagnetic
and the ferromagnetic phase are stable above and below Tc, respectively. After we
introduce the dimensionless temperature T = (T − Tc)/Tc, we immediately see
that the critical exponent of the order parameter (i.e., magnetization) defined by
M(T < 0) ∝ (−T )β is equal to β = 1/2.

The heat capacity c is calculated from c = T ds/dT = −d2g/dT 2, and we find
that cM=0 = −T d2g(0, T )/dT 2 in the paramagnetic phase and cM �=0 = cM=0 +
a2T/2b in the ferromagnetic phase. As cM �=0 − cM=0 does not diverge at the transi-
tion, the critical exponent of the heat capacity α = 0.
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Fig. 5.7 Landau theory of the ferromagnetic–paramagnetic transition: The Gibbs free energy [per
unit mass; relative to g(0, T ) and plotted in units of (aTc)2/b] as a function of reduced magneti-
zation M = M/(aTc/b)1/2 at reduced temperature T = (T − Tc)/Tc = −1, 0, and 1. Above the
critical temperature corresponding to T = 0 the minimum is at M = 0, whereas below the critical
temperature there exist two minima at M = ±√−T

Problem 5.11.
Calculate the magnetic susceptibilities of the paramagnetic and the ferromagnetic
phase within the Landau theory!

To describe the coupling of magnetization to the magnetic field, we extend the
Gibbs free energy per unit volume from Problem 5.10 by

−μ0HM

ρ
,

where H and ρ denote the magnetic field strength and the density of the sample,
respectively. In the paramagnetic phase, spontaneous magnetization vanishes; there-
fore, the fourth-order term in the free energy can be neglected because the induced
magnetization Mi is small as long as the external field is weak: g(Mi , T ) = g(0, T ) +
a(T − Tc)M2

i /2 − μ0HMi/ρ. In equilibrium one has (∂g/∂Mi )T = a(T − Tc)Mi

− μ0H/ρ = 0 which results in

Mi (T > Tc) = μ0

ρa(T − Tc)
H .

This is the Curie–Weiss law. In the ferromagnetic phase, both spontaneous and
induced magnetizations exist: M(T < Tc, H) = Ms(T ) + Mi (T, H). In equilibrium
one has (∂g/∂M)T = a(T − Tc)M + bM3 − μ0H/ρ ≈ a(T − Tc)Ms + bM3

s +
a(T − Tc)Mi + 3bM2

s Mi − μ0H/ρ = 0, where we assumed that Mi � Ms . As
a(T − Tc) + bM2

s = 0, we obtain
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Mi (T < Tc) = μ0

2ρa(Tc − T )
H .

The susceptibility of the paramagnetic phase at Tc + �T is twice as large as the
susceptibility of the ferromagnetic phase at Tc − �T . We also observe that the critical
exponent of susceptibility γ = 1 in both phases (Fig. 5.8).

Fig. 5.8 Susceptibilities of the ferromagnetic (T < 0) and paramagnetic phase (T > 0) in the
units of χ0 = μ0/ρaTc vs. reduced temperature T = (T − Tc)/Tc. The Landau theory predicts the
same value of the critical exponent below and above the transition but a larger magnitude of the
susceptibility in the paramagnetic phase; χ(+|T |) = 2χ(−|T |)

Problem 5.12.
A sample of ferromagnetic iron is placed into a magnetic field of 106 A/m strength
which is antiparallel to the existing spontaneous magnetization. Up to which temper-
aturemust the sample be heated in order to reverse the direction of themagnetization?
Use the Landau theory and treat the magnetization as a scalar. The ferromagnetic–
paramagnetic transition is at 770 ◦C. At 800 ◦C the susceptibility of the sample is
0.007 and at 20 ◦C its spontaneous magnetization is equal to 1.36 × 105 A/m; the
density of the sample is 7800 kg/m3.

In absence of magnetic field, the two minima of Gibbs free energy g(M, T ) =
g(0, T ) + a(T − Tc)M2/2 + bM4/4 − μ0HM/ρ at T < Tc are equally deep
(Fig. 5.7). Once the field is applied, this is no longer the case; a field along the
direction corresponding to M > 0 makes the M < 0 minimum shallower than the
other one and hence metastable (Fig. 5.9).
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Fig. 5.9 Landau theory Gibbs free energy of a magnetic material in a field of reduced strength of
H = μ0b1/2H/ρ(aTc)3/2 = 0.2 [per unit mass; relative to g(0, T ) and plotted in units of (aTc)2/b]
vs. reduced magnetization M at T = −1, 0, and 1. The ferromagnetic minima are not equally
deep; the one at M < 0 is metastable and vanishes in a strong enough field. Due to the field, the
paramagnetic minimum is shifted to a finite but small M > 0

The magnetizations of the stable and the metastable phase are determined by the
equation

a(T − Tc)M + bM3 = μ0H

ρ

which possesses three roots at a low enough T < T ∗(H) < Tc (the middle one
belonging to the local maximum of the free energy as shown in Fig. 5.9) and only
one root otherwise (Figs. 5.10 and 5.11). The highest superheating temperature of
the ferromagnet with magnetization pointing opposite to the field is reached when in
the equation of state, the height of the M < 0 maximum equals μ0H/ρ (Fig. 5.10).

Then one has M∗ = −√
a(Tc − T ∗)/3b as well as a(T ∗ − Tc)M∗ + bM∗3 =

2b
√
a(Tc − T ∗)/3b

3 = μ0H/ρ. Thus we obtain

T ∗ = Tc − 3b1/3

a

(
μ0H

2ρ

)2/3

.

Let us also calculate the values of the parameters of the Landau free energy.
From the susceptibility of the paramagnetic phase at 800 ◦C we find that a =
μ0/ρχp(T )(T − Tc) = 7.67 × 10−10 Jm2/kgKA2, whereas from the spontaneous
magnetization of the ferromagnetic phase at 20 ◦C we haveb = a(Tc − T )/M2(T ) =
3.11 × 10−17 Jm4/kgA4. Finally, we get T ∗ = Tc − 22.9 K = 747.1 ◦ C.
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Fig. 5.10 Solutions of the equation of equilibrium of the Landau theory in external field: In reduced
units, the left-hand side L(T ,M) reads T M + M3 (solid lines; T = −2,−0.65, and 0), and the
right-hand side is equal toH (dashed line; hereH = 0.2). At a low enough temperature (forH = 0.2
depicted here, below T ≈ −0.65), there exist three roots, and otherwise there is just one
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Fig. 5.11 Landau theory of ferromagnetism: Temperature dependence of reduced magnetization in
a magnetic field, here at the reduced field strengthH = 0.2. The solid and the dashed line correspond
to the stable and the metastable state, respectively, and the dotted line denotes the unstable solutions
of the equation of equilibrium. Also shown are solutions obtained for H = 0

Problem 5.13.
How does within the Landau theory the magnetization at the critical point vary with
the strength of magnetic field?

At Tc one has g(M, Tc) = g(0, Tc) + bM4/4 − μ0HM/ρ. The equilibrium mag-
netization is given by (∂g/∂M)T = bM3 − μ0H/ρ = 0 or

M(Tc, H) =
(

μ0H

ρb

)1/3

.
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The critical exponent δ describing the dependence of the magnetization on the mag-
netic field strength at the critical temperature, M(Tc, H) ∝ H 1/δ , is thus equal to 3.

Problem 5.14.
Nematic liquid crystals consist of elongated molecules which are orientationally
ordered below a certain temperature TN I , with a finite value of the corresponding
order parameter. In the isotropic phase observed above TN I , the orientational order
is absent and the order parameter vanishes. The transition between the two phases is
discontinuous. The Gibbs free energy of an inhomogeneous nematic per unit volume
is given by

gN (T, S,∇S) = gI (T ) + 1

2
a(T − T ∗)S2 − 1

3
bS3 + 1

4
cS4 + 3

4
L1(∇S)2,

where S is the order parameter, gI (T ) is the Gibbs free energy of the isotropic phase
per unit volume; a, b, c, and L1 are material constants, whereas T ∗ is the so-called
supercooling temperature. Calculate the nematic–isotropic phase transition temper-
ature in a homogeneous sample! Calculate the maximum superheating temperature
of the nematic phase! Determine the correlation length of orientational alignment
in the isotropic phase at TN I ! Use a = 0.13 × 106 J/m3K, b = 1.8 × 106 J/m3,
c = 4.1 × 106 J/m3, L1 = 1.1 × 10−11 J/m, and T ∗ = 307 K! Hint: When calcu-
lating the correlation length, consider ordering at a wall that induces a given (small)
value of the order parameter. In this case the S3 and S4 terms in the Gibbs free energy
can be neglected.

In a homogeneous sample, the nematic–isotropic phase transition is at a temper-
ature TN I . At this temperature, gN (TN I ) = gI (TN I ) so that

1

2
a

(

TN I − T ∗) S2
N I − 1

3
bS3

N I + 1

4
cS4

N I = 0 .

At the same time, the Gibbs free energy must have a minimum at SN I :

(
∂gN

∂S

)

T

= a
(

TN I − T ∗) SN I − bS2
N I + cS3

N I = 0 .

From these two equations, we find that

SN I = 2b

3c
= 0.29

and

TN I = T ∗ + 2b2

9ac
= 308.35 K .
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At the maximum superheating temperature of the nematic phase T ∗∗, the local min-
imum of gN at S > 0 just vanishes. By evaluating

(

∂2gN/∂S2
)

T = a (T − T ∗) −
2bS + 3cS2 at the minimum at S > 0 we see that this derivative is positive at tem-
peratures below

T ∗∗ = T ∗ + b2

4ac
= 308.52 K ,

which thus represents the metastability limit of the nematic phase. Similarly, one can
check that T ∗ indeed represents the lowest supercooling temperature of the isotropic
phase. At S = 0 which corresponds to the isotropic phase, the second derivative of
the Gibbs free energy is a(T − T ∗) and is thus negative for T < T ∗ so that below
T ∗, gN no longer exhibits a minimum at S = 0. Further, we find that the extremum
at S < 0 corresponds to the metastable planar alignment for all T < T ∗, and that it
vanishes above T ∗.

Now we follow the hint to determine the correlation length. We obtain the Euler–
Lagrange equation that describes the spatial dependence of the order parameter close
to an aligning wall:

d2S

dz2
= ξ−2S .

Here z is the distance from the wall and ξ is the correlation length defined as

ξ =
√

3L1

2a(TN I − T ∗)
= 9.7 nm .

The meaning of ξ is illustrated in Fig. 5.12: It gives the penetration depth of the
orientational order introduced by the aligning wall.

Fig. 5.12 Nematic liquid crystal at an aligning wall: The order parameter decays exponentially
with distance from the wall, and the correlation length ξ gives the thickness of the partially ordered
layer
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Problem 5.15.
For a generic discontinuous phase transition, the Gibbs free energy per unit mass
can be modeled by

g(T, η) = g0(T ) + 1

2
a(T − T ∗)η2 − 1

4
bη4 + 1

6
cη6,

where η is the order parameter, T is temperature, and g0(T ) is the free energy of
the high-temperature phase per unit mass; a, b, c, and T ∗ are positive constants.
Calculate the latent heat of the transition!

We first determine the critical temperature Tc and the corresponding value of the
order parameter in the low-temperature phase ηc. At the transition, the Gibbs free
energy must have one minimum at η = ηc and another one at η = 0, corresponding
to the low- and the high-temperature phase, and their depths must be the same so
that the phases coexist. These requirements lead to

a(Tc − T ∗)ηc − bη3
c + cη5

c = 0

and
a

2
(Tc − T ∗)η2

c − b

4
η4
c + c

6
η6
c = 0

respectively, which can be solved to give ηc = ±√
3b/4c and Tc = T ∗ + 3b2/16ac.

The latent heat q = −Tc[s(ηc) − s(0)], where s(η) is the entropy per unit mass:

s = − dg

dT
= −

(
∂g

∂T

)

η

−
(

∂g

∂η

)

T

dη

dT
= −dg0

dT
− a

2
η2.

In the last step, we took into account that in equilibrium (∂g/∂η)T = 0. Finally, the
latent heat is equal to q = (3ab/8c)Tc.

Problem 5.16.
Calculate the latent heat of the normal–superconductor transition, if the temperature
dependence of the criticalmagnetic field strength (abovewhich the field can penetrate
into the sample) is given by

Hc = H0
[

1 − (T/Tc)
2
]

!

How does the difference of the heat capacities of the superconducting and normal
phase at constant field strength depend on temperature?

In the normal phase, the magnetization is very small and can be approximated
by M = 0, whereas in the superconducting phase the sample behaves like a perfect
diamagnet and M = −H . We denote the Gibbs free energy per unit mass of the
normal phase by gN (T ) and then integrate dg = −s dT − (μ0M/ρ) dH from Hc(T )

where the free energies of the two phases are equal to H < Hc(T ). Thus, we obtain
the Gibbs free energy per unit mass of the superconducting phase:
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gS(T, H) = gN (T ) + (μ0/2ρ)
[

H 2 − Hc(T )2
]

.

The latent heat is given by

qSN = T (sN − sS) = −T

(
∂

∂T
(gN − gS)

)

H

= −μ0T

2ρ

dH 2
c

dT

= 2μ0H 2
0

ρ

(
T

Tc

)2
[

1 −
(
T

Tc

)2
]

and vanishes at T = 0 and T = Tc, reaching a maximum at T = Tc/
√

2 (Fig. 5.13).
The heat capacity at constant field strength cH = T (∂s/∂T )H so that

�cH = cSH − cNH = T

(
∂

∂T
(sS − sN )

)

H

= μ0T

2ρ

d2H 2
c

dT 2

= 2μ0H 2
0

ρTc

T

Tc

[

3

(
T

Tc

)2

− 1

]

.

We see that �cH is largest at Tc where it is equal to 4μ0H 2
0 /ρTc (Fig. 5.13). At

temperatures below Tc/
√

3 the heat capacity of the superconducting phase is smaller
than that of the normal phase and vice versa at temperatures between Tc/

√
3 and Tc.

Fig. 5.13 Difference of heat capacities of the superconducting and the normal phase (dashed line)
and the latent heat of the normal–superconductor transition (solid line) plotted versus temperature;
here c0 = 2μ0H2

0 /ρTc
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Problem 5.17.
The critical magnetic field strength for the normal–superconductor transition in
niobium is given by Hc(T ) = H0

[

1 − (T/Tc)
2
]

, where H0 = 1.58 × 105 A/m and
Tc = 9.26 K. A 10 g sample of niobium is heated in zero field from 7 K to 11 K; the
amount of heat needed for the same process in a field of strength H1 is 10−3 J less
than in the zero-field case. Calculate H1! The density of niobium is 8570 kg/m3.

The amounts of heat needed to heat the sample of mass m from T1 to T2 in zero
field and in a field of strength H1 (dashed lines in Fig. 5.14) are given by

Q1 = m

[∫ Tc

T1

cSH (T ) dT + qSN (Tc) +
∫ T2

Tc

cNH (T ) dT

]

and

Q2 = m

[
∫ T ′

T1

cSH (T ) dT + qSN (T ′) +
∫ T2

T ′
cNH (T ) dT

]

,

respectively; here

T ′ = Tc

√

1 − H1

H0

Tc

H

T
0

0

0

g gN( , ) ( )T H T–

T

T2

H1
T1

H0

T1
′

Fig. 5.14 Gibbs free energy of niobium plotted relative to that of the normal phase represented by
the horizontal plane. The dashed lines depict the two heating processes
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denotes the phase transition temperature in a field of strength H1, and the heat capac-
ities cNH and cSH as well as of the latent heat qSN are borrowed from Problem 5.16.
Note that qSN (Tc) = 0: In zero field the transition is continuous. Finally, we find that
T ′ = 8.1 K and

H1 =
√

2(Q1 − Q2)ρ

μ0m
= 3.7 × 104 A/m .

Problem 5.18.
The heat capacities of the superconducting and normal phase per unit volume can
be approximated by

cS = aT 3

and
cN = bT 3 + cT ,

respectively; here a = 10 J/m3K4, b = 8 J/m3K4, and c = 6 J/m3K2. Calculate
the temperature of a thermally insulated superconducting sample, initially at 1.5 K,
after the magnetic field strength is suddenly increased from 0 to 7000 A/m!

We first construct the Gibbs free energies of the two phases, starting with
their entropies per unit volume which read sS = ∫ T

0 (cS/T ) dT = aT 3/3 and sN =
∫ T

0 (cN/T ) dT = bT 3/3 + cT . Since at H = 0 the phase transition is continu-
ous, at Tc the entropies of the superconducting and the normal phase are equal:
sS(Tc) = sN (Tc). Thus

Tc =
√

3c

a − b
= 3 K .

At Tc the Gibbs free energies of the two phases per unit volume gS(T, H = 0) =
− ∫ T

0 sS dT = −aT 4/12 and gN (T ) = − ∫ T
0 sN dT = −bT 4/12 − cT 2/2 + k must

be equal too, and this gives k = 3c2/4(a − b). As the Gibbs free energy of the
superconducting phase also includes a magnetic term with M = −H , we obtain

gS(T, H) = −aT 4

12
+ μ0H 2

2ρ

and

gN (T ) = −bT 4

12
− cT 2

2
+ 3c2

4(a − b)
;

like in Problem 5.16, we assumed that M = 0 in the normal phase. Now we turn to
the critical magnetic field: At Hc = Hc(T ) the Gibbs free energies of the two phases
are the same so that H 2

c (T ) = (2ρ/μ0)
[

(a − b)T 4/12 − cT 2/2 + 3c2/4(a − b)
]

or
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Hc(T ) = H0
(

1 − T 2) ,

where H0 = Tc
√
cρ/2μ0 and T = T/Tc. The latent heat of the phase transition is

equal to qSN = T (sN − sS) = −(μ0T/2ρ)
(

dH 2
c /dT

)

or

qSN = cT 2
c T 2

(

1 − T 2
)

.

After the magnetic field strength is suddenly increased to 7000 A/m, the super-
conducting sample is in a superheated state because the critical field strength at
T ′ = 1.5 K is merely 3480 A/m. To convert this metastable state into the stable
normal phase, the excess magnetic Gibbs free energy is partly utilized for the phase
transition from the superconducting to the normal phase at T ′ and partly for the
heating of the normal phase from T ′ to a higher temperature T . The latter part reads
�g = (cT 2

c /4)
[

H2 − (

1 + 3T ′2) (

1 − T ′2)], where H = H/H0. The final state is
thus determined by

∫ T

T ′
cNdT = cT 2

c

4

(
3b

a − b
T 4 + 2T 2

)T

T ′

or

H2 − (

1 + 3T ′2) (

1 − T ′2) = 3b

a − b
T 4 + 2T 2 − 3b

a − b
T ′4 − 2T ′2.

This is a quadratic equation for T 2; we solve it and for H = 1.51 and T ′ = 0.5 we
find that the final temperature in reduced units T = 0.595 so that T = 1.79 K.

Problem 5.19.
Anytterbiumcompoundundergoes aphase transition fromphaseF witha temperature-
independent magnetic susceptibility χ0 to phase L where the susceptibility at a tem-
perature T is given by the Curie law C/T . At a given temperature, phases F and L
are stable below and above a critical magnetic field strength

Hc(T ) = H0

√

1 − T 2

T 2
0

,

respectively; here H0 = 3 × 107 A/m and T0 = 42 K. By how much do the heat
capacities at constant field strength differ in the two phases coexisting at 30 K? The
density of both phases is 8400 kg/m3, χ0 = 0.005, and C = 1 K. —A thermostat at
30 K contains a 100 g sample of this compound, initially in the metastableF phase;
magnetic field strength is 4 × 107 A/m. How much heat does the sample exchange
with the thermostat once equilibrium is established?
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The difference of heat capacities of two phases is related to the difference of the
temperature derivatives of their entropies by

�cH = cLH − cFH = T

m

[(
∂SL
∂T

)

H

−
(

∂SF
∂T

)

H

]

= T

m

(
∂(QLF/T )

∂T

)

H

.

In the last step, we took into account that in coexistence, the difference of entropies is
proportional to the latent heat of the transition QLF = T (SL − SF ). The latent heat
can be obtained like in Problem 5.16 or by realizing that the Clausius–Clapeyron
equation is nothing but a Maxwell relation applied to phase coexistence. For a mag-
netic system, this relation reads (∂S/∂M)T = −Vμ0(∂H/∂T )M , or

SL − SF
ML − MF

= QLF
T Hc(C/T − χ0)

= −Vμ0
dHc(T )

dT
.

By evaluating the derivative on the right-hand side, we see that the latent heat per
unit mass is

QLF
m

= μ0H 2
0 (C − χ0T )T

ρT 2
0

,

where ρ denotes the density of the compound, and thus

�cH = −Tμ0χ0H 2
0

ρT 2
0

= −11.4 J/kgK.

(This approach can also be used in Problem 5.16.)
At 30 K, the critical magnetic field strength is Hc = 2.1 × 107 A/m. Thus at H =

4 × 107 A/m phase F is indeed metastable. The heat exchanged at constant T and H
during the F → L transition is equal to the enthalpy difference Q = �(G + T S).
As this transition is strongly irreversible, Q < T�S and the second law cannot be
used to calculate Q. Instead we have to derive the Gibbs free energies GL,F (T, H)

and the entropies SL,F (T, H) of both phases like in Problem 5.16. We start by
recalling that at phase coexistence at a given temperature, GF (T, Hc) = GL(T, Hc)

and QLF/T = SL(T, Hc) − SF (T, Hc). Moreover,

(
∂GL,F

∂H

)

T

= −μ0V ML,F =
{−Vμ0χ0H, phase F

−Vμ0(C/T )H, phase L ,

and
(

∂SL,F
∂H

)

T

= Vμ0

(
∂ML,F

∂T

)

H

=
{

0 phase F
−Vμ0(C/T 2)H, phase L .
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We can further write

GL,F (T, H) = GL,F (T, Hc) +
∫ H

Hc

(
dGL,F

dH

)

T

dH

and

SL,F (T, H) = SL,F (T, Hc) +
∫ H

Hc

(
dSL,F

dH

)

T

dH.

Imagine now a reversible path starting at H > Hc in phase F whereby the sample
reaches phase equilibrium at Hc upon an isothermal decrease of the field strength,
then undergoes a reversible F → L transition, and finally returns to the initial H
in phase L upon an isothermal increase of the field strength. This path can be used
to calculate the exchanged heat given by the difference of enthalpies; note that all
quantities involved—enthalpy, Gibbs free energy, and entropy—are functions of
state. We find that the heat exchanged per unit mass is

Q

m
= μ0

ρ

(
χ0

2
− C

T

)

(H 2 − H 2
c ) + QLF

m

so that 0.34 kJ of heat is emitted in the process.

Problem 5.20.
Calculate the saturated electron current in a diode with a tungsten cathode heated
to 2000 ◦C! The ionization energy is 4.52 eV and the surface area of the cathode is
0.2 cm2.

The entropy of the electron gas is equal to the entropy of the evaporated electrons
or

∫ T
0 (cp/T ) dT + qv/T = (R/M)

[

ln(JT 5/2/p) + 5/2
]

, where J is the chemical
constant. The first term on the left-hand side can be neglected because the heat
capacity of electrons in tungsten is rather small. Now we are interested in qv(T ): The
Kirchhoff formula states that dqv/dT = �

[

cp + (∂h/∂ p)T (dp/dT )
]

. By treating
the evaporated electrons as an ideal gas, we have (∂h/∂ p)T = 0 and cp = 5R/2M .
Then dqv/dT = �cp ≈ 5R/2M if as before the heat capacity of electrons in tungsten
is neglected. Thus qv(T ) = qv(0) + 5RT/2M and since Mqv(0) = NAEi , where Ei

is the work function, the pressure is given by

p = JT 5/2 exp

(

− Ei

kBT

)

.

Now assume that at a given accelerating voltage between the anode and the cathode,
the electron flux density j emitted from the cathode is the same as at zero voltage.
From the kinetic theory of gases we have j = n〈v〉/4, where n = p/kBT is the
number density of electrons and 〈v〉 = √

8kBT/πme is their average speed. Then the
current density is equal to je = e0 j . By recalling that the chemical constant is given
by J = 2(2πme)

3/2k5/2
B h−3, we find that the current



84 5 Phase Transitions

I = 4πmee0k2
BT

2A

h3
exp

(

− Ei

kBT

)

= 11.9 mA ,

where A is the surface area of the cathode. This result is known as Richardsons law,
and the phenomenon itself is referred to as the thermionic emission.

Problem 5.21.
A thermostat contains a sealed bottle with 5 g of ice, 5 g of liquid water, and 5 g
of water vapor in coexistence at 610 Pa and 0.01 ◦C. What are the masses of ice,
water, and vapor after 1 kJ of heat is supplied to the bottle? At this temperature,
the heat of fusion is 0.33 MJ/kg and the heat of vaporization is 2.47 MJ/kg. The
densities of ice and water are 916 kg/m3 and 1000 kg/m3, respectively, and the
kilomolar mass of water is 18 kg/kmol.

We assume that in the final state, the three phases are still in equilibrium so
that pressure and temperature, which correspond to the triple point of water, remain
unchanged. In the process, mass is conserved

ms + ml + mv = 3m ′ ,

where ms , ml , and mv denote the masses of ice, water, and vapor in the final state,
respectively, whereas m ′ is the initial mass of each of the phases. Also conserved is
the total volume:

m ′

ρs
+ m ′

ρl
+ m ′

ρv

= ms

ρs
+ ml

ρl
+ mv

ρv

;

here ρs and ρl are the densities of ice and water, respectively, and the vapor density
ρv is given by the ideal gas equation of state: ρv = pM/RT . The third relation to be
considered is enthalpy change:

Q = (mv − m ′)(q f + qv) + (ml − m ′)q f .

Here Q is the heat supplied, q f is the heat of fusion, and qv is the heat of vaporization.
From these three conservation laws we obtain the masses of all the three phases in
the final state: ms ≈ 2 g, ml ≈ 8 g, and mv ≈ 5 g. This result a posteriori justifies
the introductory assumption.



Chapter 6
Mixtures

Problem 6.1.
A ten-liter insulated vessel is divided into two equal compartments by a wall. The
first compartment contains O2 at 5 bar and 80 ◦C, whereas the second one contains
CO2 at 2 bar and 50 ◦C. The wall breaks so that the gases mix. Calculate the final
temperature and pressure! Also calculate the changes of internal energy, enthalpy,
and entropy! The heat capacities of O2 and CO2 at constant pressure are 930 J/kgK
and 914 J/kgK, respectively, and the corresponding ratios of heat capacities cp/cV
are 1.39 and 1.26, respectively.

Since mixing takes place at constant volume and the vessel is thermally insulated,
the total internal energy of the system is conserved in the process. Therefore

∑

i

mi c
i
V T

′
i =

(
∑

i

mi c
i
V

)
T ,

where index i refers to each of the two components. The masses mi are given by the
ideal gas equation of state mi = p′

i V
′
i Mi/RT ′

i for each component prior to mixing;
the primed quantities all correspond to the initial state. By using R/Mi = cip − ciV
and cip/c

i
V = κi , we find that the final temperature reads

T =
∑

i

p′
i V

′
i

κi − 1

/ ∑

i

p′
i V

′
i

T ′
i (κi − 1)

= 68.1 ◦C .

The final pressure p follows from
∑

i (mi/Mi ) = ∑
i (p

′
i V

′
i /RT

′
i ) = pV/RT , where

V = ∑
i V

′
i , and is equal to

p = T

V

∑

i

p′
i V

′
i

T ′
i

= 3.47 bar .
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The change of enthalpy is �H = ∑
i mi cip(T − T ′

i ) = −28.8 J; the change of
entropy is �S = ∑

i

[
micip ln

(
T/T ′

i

) − (mi R/Mi ) ln
(
pi/p′

i

)] = 7.1 J/K, where
pi denotes the partial pressure of component i in the final state.

Problem 6.2.
Calculate the osmotic pressure of a 0.2% solution of sugar C12H22O11 at 20 ◦C!
Determine the corresponding shifts of the boiling and melting points with respect to
pure water!

We denote the solvent (water) by A and the solute (sugar) by B, and consider a
U tube with a semipermeable membrane (Fig. 6.1). One compartment contains pure
water with a chemical potential μ◦

A(T, p), whereas the other one contains the sugar
solution where the chemical potential of the solvent depends on the mole fraction
of the solute x̃B = 1 − x̃ A and is equal to μA(T, p + �p, x̃ A). In equilibrium, the
pressure difference across the membrane is equal to the osmotic pressure �p, the
chemical potentials of the solvent on both sides of the membrane being equal. In a
dilute (ideal) solution we have

Fig. 6.1 U tube containing a semipermeable membrane used in measurements of osmotic pressure

μA(T, p + �p, x̃ A) = μ◦
A(T, p + �p) + RT

MA
ln x̃ A

= μ◦
A(T, p) + �p

ρA
+ RT

MA
ln x̃ A ;

here Mi (i = A, B) stands for the kilomolar mass of each component in the solution.
Upon expanding the logarithm for x̃ A ≈ 1 (which corresponds to x̃B � 1), we can
express the osmotic pressure from μ◦

A(T, p) = μA(T, p + �p, x̃ A) to find
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�p = ρART xB
MB

,

where xB ≈ x̃BMB/MA is the mass fraction of sugar. For ρA = 103 kg/m3,
T = 20 ◦C, xB = 0.002, and MB = 342 kg/kmol, we have �p = 1.42 × 104 Pa.

We now focus on the boiling-point elevation. At the boiling temperature T and
pressure p, the pure solvent (l) must be in equilibrium with its vapor (v) and their
chemical potentials must be the same:

μl◦
A (T, p) = μv

A(T, p) .

Once the solute (which is assumed not to evaporate) is added to the solvent, the
chemical equilibrium at constant pressure shifts to T + �T . This is accompanied by
a change in both chemical potentials which, however, remain equal:

μl
A(T + �T, p, x̃ A) = μv

A(T + �T, p) .

At constant pressure, �μi = −si �T (i = A, B), where si is the specific entropy of
a given phase. We expand this equation for small �T and x̃B = 1 − x̃ A � 1, and
note that the heat of vaporization of the solvent is given by qv = T (sv

A − slA). This
leads to

�T

T
= RT xB

MBqv

.

For qi = 2.26 MJ/kg and T = 373 K one obtains �T = 0.003 K. A similar expres-
sion can be derived for the melting point depression; q f = 336 kJ/kg gives �T =
−0.011 K. Note that the signs of the boiling-point elevation and the melting-point
depression are opposite: In the former case, the presence of the solute decreases
the chemical potential of the low-temperature phase, whereas in the latter case it
decreases the chemical potential of the high-temperature phase.

Problem 6.3.
Determine the equilibrium composition of a gaseous mixture containing three iso-
mers of pentane (n-pentane, isopentane, and neopentane) at 1 bar and 298 K!
The corresponding standard Gibbs free energy of formation for the three iso-
mers in the reaction 5C + 6H2 → C5H12 are 40.195 kJ/mol, 34.415 kJ/mol, and
37.640 kJ/mol, respectively.

The dynamical equilibrium between the isomers is represented by the reaction
νA A + νB B � νCC , where A, B, and C denote n-pentane, isopentane, and neopen-
tane, respectively. In equilibrium at constant pressure and temperature the total Gibbs
free energy is minimal, which implies that for an attempted change in composition
dn

dG = −νAMAμA dn − νBMBμB dn + νCMCμC dn = 0 .
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Here νi Midn are themasses of the synthesized/decomposed component i = A, B,C
(νidn being the change of amount in moles), Mi are the corresponding molar masses,
and μi are the corresponding chemical potentials. Therefore

νAMAμA + νBMBμB = νCMCμC .

For an ideal gas with a partial pressure pi one has

μi (T, pi ) = μ◦
i (T, p) + RT

Mi
ln

pi
p

,

where μ◦
i (T, p) refers to the gas of pure component i at a pressure p and temperature

T . Upon introducing the mole fraction

x̃i = mi/Mi∑
i (mi/Mi )

= pi
p

,

one obtains

RT ln
x̃νA
A x̃νB

B

x̃νC
C

= (
νCMCμ◦

C − νBMBμ◦
B − νAMAμ

◦
A

)
T p .

The expression in the brackets corresponds to the change of the Gibbs free energy
in a hypothetical reaction where all reactants are converted to products. Now
consider the equilibrium nC5H12 � isoC5H12. We insert νA = 1, νB = −1, and
νC = 0 into the above expression, and the change of the Gibbs free energy is
�GB − �GA = −5.78 kJ/mol where �Gi (i = A, B,C) is the standard Gibbs free
energy of formation of isomer i . We obtain

x̃ A
x̃B

= exp

(
�GB − �GA

RT

)
= 0.097 .

For the equilibrium nC5H12 � neoC5H12 one writes νA = 1, νB = 0, νC = 1, and
�GC − �GA = −2.55 kJ/mol, yielding

x̃ A
x̃C

= exp

(
�GC − �GA

RT

)
= 0.356 .

As x̃ A + x̃B + x̃C = 1, we find that x̃ A = 0.071 (n-pentane), x̃B = 0.730 (isopen-
tane), and x̃C = 0.199 (neopentane). The mixture is dominated by isopentane, which
has the smallest standard Gibbs free energy of formation of all three isomers.
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Problem 6.4.
The solar photosphere can be represented by an ideal-gas mixture of electrons,
protons, and atomic hydrogen. The ionization energy of hydrogen is equal to 13.6 eV.
What is the dependence of the concentration of atomic hydrogen on temperature?

The dynamic equilibrium in the photosophere is represented by the reaction H �
H+ + e− with

μHMH = μH+MH+ + μe−Me− .

In an ideal gas, the chemical potential of component i reads μi (T, pi ) = μ◦
i (T, p) +

(R/Mi )T ln (pi/p), where pi is the partial pressure and μ◦
i (T, p) is the chemical

potential of a pure component at a total pressure p. It follows that

μ◦
HMH − μ◦

H+MH+ − μ◦
e−Me− = RT ln

(
pH+ pe−

pH p

)
.

Each of the chemical potentials μ◦
i (T, p) can be recast as μ◦

i (T, p) = ui + p/ρi −
T si , where ρi , ui , and si are the mass densities of matter, internal energy, and entropy
of the pure components. A part of the left-hand side of the above equation represents
the ionization energy

Ei = −uHMH + uH+MH+ + ue−Me−

NA
,

where NA = 6 × 1026 kmol−1 is the Avogadro number. By using the ideal gas equa-
tion of state pMi/ρi = RT and by substituting si by (R/Mi )

[
ln (Ji T 5/2/p) + 5/2

]
,

where Ji is the chemical constant of component i , we obtain

pH+ pe−

pH
= JH+ Je−

JH
T 5/2 exp

(
−NAEi

RT
+ 3

2

)
.

We need to evaluate the degree of dissociation of atomic hydrogen quantified by

α = pH
pH + pH+ + pe−

,

since particle number density is proportional to the partial pressure pi . From H �
H+ + e− it follows that pH+ = pe− ; evidently p = pH + pH+ + pe− . We find that

(1 − α)2

α
∝ T 5/2

p
exp

(
−NAEi

RT

)

and finally compute α = α(T ) numerically; the result is shown in Fig. 6.2. Limiting
cases: For T → ∞we have α = 0 (all hydrogen is dissociated), whereas for T → 0
α → 1 (all hydrogen is in the atomic form).
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Fig. 6.2 Degree of dissociation of atomic hydrogen in the solar photosphere shown schematically
as a function of temperature; T0 = NAEi/R is the characteristic temperature

Problem 6.5.
The dissociation of molecular sodium Na (g)

2 � 2Na(g) is an equilibrium reaction
where both reactant and product are gaseous. At 1000 K, the partial pressure of
Na2 corresponds to one quarter of the total pressure. How does this partial pressure
change after the mixture is heated by 10 K at constant pressure? The dissociation
energy of Na2 is 70.4 MJ/kmol.

From the balance of the Gibbs free energy in dynamic equilibrium we obtain
a relation between the chemical potentials of Na2 and Na: μNa2(T, pNa2)MNa2 =
2μNa(T, pNa)MNa. If spelled out with respect to the reference pressure p = pNa2 +
pNa, this relation reads

μ◦
Na2(T, p)MNa2 + RT ln

pNa2
p

= 2μ◦
Na(T, p)MNa + 2RT ln

pNa
p

;

the quantities denoted by ◦ again refer to pure substances. After introducing x =
pNa/p we have

μ◦
Na2

T

MNa2

R
− 2

μ◦
Na

T

MNa

R
= ln

x2

1 − x
≡ α(T ) .

We now calculate the change of concentration x after temperature is increased,
and to this end we examine the temperature dependence of α(T ). We find that(
∂(μ/T )/∂T

)
p = −h/T 2, where h stands for the enthalpy per unit mass. Thus

RT 2

(
∂α

∂T

)

p

= −h◦
Na2MNa2 + 2h◦

NaMNa = �Hr .
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The right-hand side represents the enthalpy of reaction. By taking into account the
ideal gas equation of state, we can express it in terms of the dissociation energy
�Ur = �Hr − RT which gives (∂α/∂T )p = 9.5 × 10−3 K−1. In the initial statewe
have α(T ) = 0.81, and in the final state α(T + �T ) ≈ α(T ) + (∂α/∂T )p �T =
0.905. Here we assumed that �Ur 
= �Ur (T ). The final concentration of atomic
sodium x f is found by solving the quadratic equation

x2f + exp
(
α(T + �T )

)
(x f − 1) = 0

and the physically relevant solution is x f = 0.764 so that the partial pressure of Na2
is (1 − x f )p = 0.236 p.

Problem 6.6.
A vessel contains water and ether, which do not mix. A non-evaporating amphiphilic
colorant soluble in both fractions is added; as a consequence, the boiling point of
the water fraction increases by 0.01 K. Calculate the shift of boiling point of the
ether fraction given that both solutions are ideal and in equilibrium! The kilomo-
lar masses of colorant, ether, and water are equal to 340 kg/kmol, 74 kg/kmol,
and 18 kg/kmol, respectively. The boiling points of water and ether are 100 ◦C
and 34.6 ◦C, respectively; the corresponding latent heats are 2.26 MJ/kg and
0.35 MJ/kg, respectively.

We denote the boiling point of component i by Ti , its shift after the colorant is
added by�Ti , the kilomolar mass by Mi , and the latent heat of vaporization by qi ; in
colorant, ether, and water, i = c, e, and w, respectively. In equilibrium, the chemical
potentials of the colorant in the water and ether fractions, μ(̃xw) and μ(̃xe), are
equal; x̃w and x̃e stand for the corresponding mole fractions of the colorant. For ideal
solutions we have μ(̃xw) = μ◦ + (RT/Mc) ln x̃w and μ(̃xe) = μ◦ + (RT/Mc) ln x̃e;
μ◦ denotes the chemical potential of pure colorant. Then μ(̃xw) = μ(̃xe) leads to
x̃w = x̃e or xwMw ≈ xeMe for dilute solutions; xw and xe are the corresponding
mass fractions. From the shift of the boiling point �Tw we now calculate the mass
fractions of the colorant in both water and ether fractions: xw = Mcqw �Tw/RT 2

w =
6.6 × 10−3 and xe = xwMw/Me = 1.6 × 10−3. Thus the boiling point of the ether
fraction increases by

�Te = RT 2
e xe

Mcqe
= 0.0107 K .

Problem 6.7.
Consider the system from Problem 6.6, now kept at 20 ◦C. From a sample of the
ether fraction containing the colorant, one finds that its vapor pressure is lower than
in pure ether by 4.3 mbar; in pure ether it is 586 mbar. Calculate the mass fraction
of the colorant in the ether fraction! Calculate the decrease of the vapor pressure
of water above the water fraction, assuming that the colorant does not evaporate!
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The saturated vapor pressure of water is 23.37 mbar, and the densities of ether and
water are 713 kg/m3 and 1000 kg/m3, respectively.

Like in Problem 6.6 we first conclude that in equilibrium the mole fractions of
the colorant in the two solutions are equal, x̃e = x̃w ≡ x̃ . Next, we determine the
relation between the colorant concentration and the decrease of the solvent (e.g.,
ether) vapor pressure. When pure liquid ether is in equilibrium with its vapor, their
chemical potentials μ◦l

e (T, p) and μ
g
e(T, p), respectively, are equal. This also holds

after the colorant is added, but the equilibrium is accompanied by a pressure drop
�p: μl

e(T, p − �p, 1 − x̃) = μ
g
e(T, p − �p), where 1 − x̃ is the molar fraction of

ether in solution. This can be rewritten as

μ◦l
e (T, p) +

∫ p−�p

p

dp

ρle
+ RT

Me
ln (1 − x̃) = μg

e(T, p) +
∫ p−�p

p

dp

ρ
g
e

,

where ρle and ρ
g
e = pMe/RT are the densities of liquid and gaseous ether, respec-

tively. By assuming that in the pressure range considered ρle barely changes, we
obtain

−�p

ρle
+ RT

Me
ln (1 − x̃) = RT

Me
ln

(
1 − �p

p

)
.

Since ρ
g
e � ρle, the first term on the left-hand side is negligible and hence the relative

decrease of vapor pressure in the ether fraction is simply given by �p/p = x̃ =
7.3 × 10−3. Thus the mass fraction of the colorant in the ether solution is

xec = 1

1 + (Mw/Mc)(̃x−1 − 1)
= 0.122.

(The above result�p/p = x̃ is closely related to Raoult’s law stating that, in an ideal
mixture, the partial vapor pressure of any of its components is equal to the vapor
pressure of the pure component multiplied by its mole fraction.)

Because x̃e = x̃w = x̃ , the relative decrease of the vapor pressure of the water
fraction is the same as that of the ether fraction, i.e., 7.3 × 10−3, so that the absolute
pressure decrease is 0.17 mbar. (Note that at 20 ◦C the vapor pressures of ether and
water differ, leading to different �ps.)

Problem 6.8.
A membrane permeable only to water divides a vessel into two compartments. The
first compartment contains a 0.5% water solution of glucose, whereas the second
one contains a 0.8% water solution of sucrose. Calculate the pressure difference
across the membrane in equilibrium at 90 ◦C! The kilomolar masses of water, glu-
cose, and sucrose are 18 kg/kmol, 180 kg/kmol, and 342 kg/kmol, respectively.
Assume that the solutions are ideal and that water is incompressible, its density
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being 1000 kg/m3. How does the result change if both solution concentrations are
increased to 100 times their initial value?

We label the compartments containing containing the glucose and the sucrose
solution by 1 and 2, respectively, and we denote water, glucose, and sucrose by
A, B, and C, respectively. In equilibrium, the chemical potentials of water in the

two compartments are equal, i.e., μA

(
T, p1, x̃

(1)
A

)
= μA

(
T, p2, x̃

(2)
A

)
, where x̃ (1)

A

and x̃ (2)
A are the corresponding mole fractions of water. The chemical potentials are

related to that of pure water, μ◦
A(T, p0), at a reference pressure p0 by

μ◦
A(T, p0) + p1 − p0

ρA
+ RT

MA
ln x̃ (1)

A =

μ◦
A(T, p0) + p2 − p0

ρA
+ RT

MA
ln x̃ (2)

A ,

which gives the pressure difference across the membrane:

p2 − p1 = ρART

MA

[
ln x̃ (1)

A − ln x̃ (2)
A

]
.

This result can be interpreted as the difference of osmotic pressures of the two
solutions, each of them measured against pure water. The mole fractions of water
are given by x̃ (1)

A = 1 − x̃B and x̃ (2)
A = 1 − x̃C , where

x̃B,C =
[
MB,C

MA

(
1

xB,C
− 1

)
+ 1

]−1

;

xB and xC are the mass fractions of the two solutes. Finally we find that the pressure
difference is −13 kPa. After the concentrations of both solutes are increased 100
times, the pressure difference is 16 MPa. Note that apart from the evident increase in
magnitude, the pressure difference also differs in sign compared to that at the lower
concentrations.

Problem 6.9.
In humid air containing saturated water vapor at 300 K, droplets condense around
tiny charged particulate seeds. If the droplets contain 1% glucose solution, their
equilibrium radius is 1 μm. Calculate the equilibrium radius of droplets of pure
water! The surface tension, relative permittivity, and density ofwater are 0.073N/m,
81, and 103 kg/m3, respectively, and the kilomolar mass of glucose is 342 kg/kmol.

Water vapor at the saturated vapor pressure ps is in equilibrium with liquid water
at the atmospheric pressure p:

μv(T, ps) = μ◦
l (T, p) ,
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where μv(T, ps) and μ◦
l (T, p) are the chemical potentials of water vapor and liquid

water, respectively. Simultaneously, it is also in equilibrium with the pure-water
droplets and the glucose-solution droplets, where the chemical potential of water is
μ◦
l (T, p′) and μl(T, p′′, x), respectively; x stands for the mass fraction of glucose.
Hence

μl(T, p′′, x) = μ◦
l (T, p) + p′′ − p

ρ
− RT x

M
= μv(T, ps) ,

which gives p′′ − p = ρRT x/M ; here M denotes the kilomolar mass of sugar and
ρ the density of water. The pressure difference p′′ − p is due to both surface tension
and electrostatic charge. The electrostatic pressure is calculated like in Problem 4.15
using the principle of virtual work. One must be careful when writing the change of
density of electrostatic energy upon an infinitesimal expansion of the droplet: The
electric charge of the seed e is located in the center of the droplet and is surrounded
by water of relative permittivity of ε = 81 so that

p′′ − p = 2γ

r ′′ − e2

32π2ε0r ′′4

(
1 − 1

ε

)
= ρRT x

M
,

where γ stands for the surface tension of water and r ′′ = 1 μm is the radius of the
droplet. From here we can calculate the magnitude of the electric charge of the seed,
which is e = 1.44 × 10−14 As. For pure-water droplets of diameter r ′ we have

μ◦
l (T, p′) = μ◦

l (T, p) + p′ − p

ρ
= μv(T, ps) ,

which implies that p = p′ and

p′ − p = 2γ

r ′ − e2

32π2ε0r ′4

(
1 − 1

ε

)
= 0 .

Finally we have r ′ = 3
√
e2(ε − 1)/64π2γεε0 = 0.8 μm.

Problem 6.10.
Interpret the boiling-point diagram of an ideal binary fluid solution, e.g., a mixture of
fluid nitrogen and oxygen! (The diagram also applies to ideal alloys like the copper–
nickel alloy.) Derive the expression for the dew-point curve and the bubble-point
curve!

We denote the two components of the mixture by A and B, and consider the
mixture at a constant pressure where the phase diagram depends on temperature
and on composition represented by the concentration of one of the components, say
x̃B (Fig. 6.3). The phase diagram is divided into three regions: The liquid and the
vapor region at low and high temperatures, respectively, are separated by the two-
phase region where liquid and vapor mixtures coexist. In the two-phase region, the
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concentrations of the two phases are different from each other, and they depend only
on temperature and not on the overall concentration. The state of the vapor–liquid
mixture in the two-phase region is also described by the mass fractions of the vapor
and the liquid phase—when cutting across the two-phase region along a horizontal
constant-temperature line from the dew-point curve to the bubble-point curve, the
fractions of the vapor and the liquid phase change from 100% to 0 and from 0 to
100%, respectively, whereas the concentrations of the vapor and the liquid phase
themselves remain constant.

Upon heating at constant concentration x̃B , the initially liquid-phase binary mix-
ture transforms as indicated by the dashed path in the diagram in Fig. 6.3. In the
liquid region (line MN), the temperature of the mixture increases upon heating just

0.2 0.6 0.80.4

TA

TB
T

v l+

M

O’ O

P’ P

R

l

v

l

v

0
Bx
~

NN’

1

Fig. 6.3 Boiling-point diagram of an ideal binary fluid mixture where the two components are
perfectly miscible. The state of the mixture is illustrated by the diagram on the right, consisting of
the vapor (v) and the liquid (l) phase. The shade of gray indicates the concentration of component
B. In the two-phase region the mixture consists of the B-poor vapor phase and of the B-rich liquid
phase. With increasing temperature, the mass fraction of the vapor phase increases whereas that of
the liquid phase decreases. This is further elaborated in Problem 6.11

like in a pure substance. At the bubble-point curve, the mixture consists of the vapor
phase with concentration N’ and of the liquid phase with concentration N, with
the mass fraction of the vapor phase being negligible compared to that of the liquid
phase. Upon further heating, the temperature of themixture increases while the vapor
and the liquid phase both get richer and richer in component B (points O’ and O);
at the same time, the mass fraction of the vapor phase increases. At point P’ the
concentration of the vapor phase is equal to the initial concentration of the liquid
phase, the mass fraction of the liquid phase of concentration given by point P being
infinitesimally small. Along line P’R the vapor phase behaves like a pure substance.
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The behavior of the mixture in the two-phase region is exploited in distillation,
where the B-poor vapor phase and the B-rich liquid phase are physically separated,
e.g., by pumping the vapor phase. After multiple cycles of pumping, condensation,
and reevaporation of the vapormixture, one can significantly reduce the concentration
of component B; however, after every cycle the mass of the concentrate rich in
component A is reduced too.

We now analyze the characteristic shape of the two-phase region. In the entire
concentration range, the chemical potential of each component of the ideal mixture
μi (i = A, B) is given by μi = μ◦

i + (RT/Mi ) ln x̃i , where μ◦
i refers to a pure com-

ponent i and x̃i denotes the mole fraction of the component. In the following, indices
v and l correspond to vapor and liquid, respectively. We consider chemical equilib-
rium along an isotherm cutting across the two-phase region from the dew-point curve
to the bubble-point curve. Along the isotherm we have μv

i

(
x̃v
i

) = μl
i

(
x̃ li

)
or

μv◦
i + RT

Mi
ln x̃v

i = μl◦
i + RT

Mi
ln x̃ li .

Together with the constraints x̃ lA + x̃ lB = 1 with x̃v
A + x̃v

B = 1, this equation deter-
mines the mole fractions of component i at the dew-point curve and the bubble-point
curve x̃v

i (T ) and x̃ li (T ), respectively. We find that

x̃v
B(T ) = 1 − exp

(−λA(T )
)

exp
(−λB(T )

) − exp
(−λA(T )

)

and

x̃ lB(T ) = exp
(
λA(T )

) − 1

exp
(
λA(T )

) − exp
(
λB(T )

) ,

where λi (T ) = (
μl◦
i − μv◦

i

)
Mi/RT ; analogous expressions are obtained for x̃v

A(T )

and x̃ lA(T ).
In order to construct the boiling-point diagram, we still need the functional form

of λi (T ). At the boiling point of either pure component T = Ti one has μv◦
i = μl◦

i
so that λi (Ti ) = 0. By noting that

(
∂(μ/T )/∂T

)
p

= −h/T 2 where h is the specific
enthalpy, we have

λi (T ) =
∫ T

Ti

(
∂λi

∂T

)

p

dT = Miqi
R

∫ T

Ti

dT

T 2
= Miqi

RTi

(
1 − Ti

T

)
.

Here we took into account that the difference of specific enthalpies of the vapor and
the liquid phase is equal to the heat of vaporization of a pure component denoted
by qi . Since usually T ≈ Ti , we have λi (T ) � 1 and exp

(±λi (T )
) ≈ 1 ± λi (T ) +

λ2
i (T )/2.
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For simplicity, we further set MAqA/RTA = MBqB/RTB = α and obtain

x̃v,l
B (T ) = T − TA

TB − TA
± α(T − TA)(T − TB)

2(TB − TA)T
.

The first term represents a tieline connecting the boiling points of pure substances
and the second one is the deviation of the dew-point curve and the bubble-point curve
from the tieline, with + and − giving x̃v

B and x̃ lB , respectively.

Problem 6.11.
Calculate the temperature dependence of the mass fraction of the vapor phase in the
two-phase region for an ideal binary mixture!

Mass conservation for each of the components implies that in the two-phase region
the mass fraction of the vapor phase xv is determined by xv x̃v

B + (1 − xv) x̃ lB = x̃B ,
where x̃v

B and x̃ lB denote the mole fractions of the component B in the gas and in the
liquid phase and x̃B is the mole fraction of B outside the two-phase region. We insert
the temperature dependence of x̃v

B(T ) and x̃ lB(T ) calculated in Problem 6.10 to find

xv(T ) = 1

2
− T [T − (1 − x̃B)TA − x̃BTB]

α(T − TA)(T − TB)
,

where TA and TB are the boiling temperatures of pure components and α denotes the
ratios MAqA/RTA and MBqB/RTB which are assumed to be the same.

We can also determine the temperature at which, upon heating, bubbles appear in
the liquid mixture with composition x̃B . In this case xv(T ) = 0, giving

Tv = 1

2(α − 2)

{
α (TA + TB) − 2TA − 2x̃B (TB − TA)

−
√
[α (TA + TB) − 2TA − 2x̃B (TB − TA)]

2 − 4α(α − 2)TATB

}
.

The temperature at which, upon cooling, droplets appear in the vapor mixture with
composition x̃B is

Tl = 1

2(α + 2)

{
α (TA + TB) + 2TA + 2x̃B (TB − TA)

+
√
[α (TA + TB) + 2TA + 2x̃B (TB − TA)]

2 − 4α(α + 2)TATB

}
.

Problem 6.12.
An ideal mixture of fluids A and B, with the mole fraction of the B component
equal to 0.563, starts to evaporate at 334 K. After the first drop of the mixture
evaporates, the mole fraction of B in the vapor phase is 0.484. Calculate the heats
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of vaporization for the two components! Pure substances A and B boil at 329 K
and 338 K, respectively, and their kilomolar masses are equal to 58 kg/kmol and
32 kg/kmol, respectively!

We use the results of Problem 6.10. We denote the bubble-point temperature in
question by T ∗, the mole fractions of B in the liquid and the vapor phase at this
temperature by x̃ lB and x̃v

B , respectively, the boiling points of the pure substances by
TA and TB , the kilomolar masses by MA and MB , and the heats of vaporization by
qA and qB . For λi (T ) = (Miqi/RTi )(1 − Ti/T ) � 1 (i = A, B) we have

x̃v
B = λA(T )

1 + λB(T )/2

λA(T ) − λB(T )

and

x̃ lB = λA(T )
1 − λB(T )/2

λA(T ) − λB(T )
.

From the data we extract λA(T ∗) = 0.166 and λB(T ∗) = −0.151, which finally
give qA = 523 kJ/kg and qB = 1107 kJ/kg. (Substances A and B are acetone and
methanol, respectively.)

Problem 6.13.
Metals A and B are perfectly miscible in the melt but they do not mix
in the solid phase. Their melting points are at 660 ◦C and 1400 ◦C, respectively.
Determine the composition of the melt in coexistence with the crystals of pure metal
A (B) at 610 ◦C! What is the lower temperature bound for the existence of the melt?
What is the composition of the melt at this temperature? Assume that the melt can be
treated as an ideal binary mixture and that MAqA = MBqB = 21.6 MJ/kmol in the
entire temperature range considered. Here MA and MB denote the kilomolar masses
of the metals; qA and qB are the corresponding latent heats of fusion.

We first consider the coexistence of crystals of metal A and the A-B mixture in
the melt. Coexistence implies the equality of the chemical potential of metal A in
the solid phase and in the melt:

μs◦
A = μl◦

A + RT

MA
ln x̃ lA ,

where we use the notation analogous to that in Problem 6.10. From here we have

x̃ lA = exp

(
MA

RT

(
μs◦
A − μl◦

A

))
.
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Like in Problem 6.10 we find that

μs◦
A − μl◦

A

T
= qA

(
1

TA
− 1

T

)
,

where TA is the melting temperature of pure metal A. Consequently,

x̃ lA(T ) = exp

(
MAqA

R

(
1

TA
− 1

T

))
.

The composition of the melt in coexistence with solid metal B is obtained by
swapping indices A and B in the above expression. At 610 ◦C, the numerical results
are x̃ lA = 0.854 for the coexistence of solid A and melt and x̃ lA = 1 − x̃ lB = 0.751
for the coexistence of solid B and melt.

The thus obtained x̃ lA(T ) and x̃ lB(T ) determine the locus of the so-called liquidus
curves in the temperature-composition phase diagram. For either component, the
phase coexistence temperature decreases with decreasing concentration of the com-
ponent; consequently, the two liquidus curves intersect at a point (referred to as the
eutectic point) corresponding to the lowest possible temperature at which a melt can
exist. To find the eutectic temperature TE , we equate the x̃ lA(T ) obtained from the
two liquidus curves

exp

(
MAqA

R

(
1

TA
− 1

TE

))
= 1 − exp

(
MBqB
R

(
1

TB
− 1

TE

))
,

and set qAMA/R = qBMB/R ≡ τ to obtain

TE = τ

ln
(
exp (τ/TA) + exp (τ/TB)

) = 581.5 ◦C .

The concentration of, e.g., metal A in the eutectic melt is then

x̃ lA(TE ) = exp

(
τ

(
1

TA
− 1

TE

))
= 0.774 .

Problem 6.14.
A horizontal cylinder contains 1 kg of saturated humid air at 20 ◦C. The cylinder
is sealed at the left end and closed by a movable piston on the right; the mass and
surface area of the piston are 10 kg and 1 dm2, respectively. The cylinder is rotated
counterclockwise by 90◦ at constant temperature. How much water is condensed in
the process? By how much does should the temperature be increased for the water to
evaporate again? The ambient pressure is 1 bar. The heat of vaporization of water
at 20 ◦C is 2454 kJ/kg and the saturated vapor pressure at this temperature is
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2337 Pa; the kilomolar masses of air and water are 29 kg/kmol and 18 kg/kmol,
respectively.

Each of the components—dry air and water vapor—can be described by the ideal
gas equation of state pi V = mi RT/Mi , where i = a for air and i = v for vapor. In
the initial state, the pressure of ambient air p0 is equal to the sum of both partial
pressures: p0 = pa + pv . At the same time, the partial pressure of vapor pv is given
by the saturated vapor pressure at 20 ◦C denoted by ps . Thus the initial mass of vapor
is

mv = m

[
1 +

(
p0
ps

− 1

)
Ma

Mv

]−1

= 14.6 g ,

where m = ma + mv is the initial mass of humid air, whereas Mv and Ma are the
kilomolar masses of water and dry air, respectively. After the cylinder is rotated, the
pressure inside it increases due to the weight of the piston to p0 + �p = p′

a + ps
with �p = m0g/A, where m0 and A denote the mass and the surface area of the
piston, respectively. Despite the increase of the total pressure, the partial water vapor
pressure remains unaltered and equal to ps because the temperature is constant. By
taking into account that p′

aV
′ = (ma/Ma)RT and psV ′ = (m ′

v/Mv)RT we obtain
the mass of the remaining water vapor:

m ′
v = mv

(
p0
ps

− 1

) (
p0 + �p

ps
− 1

)−1

= 13.3 g .

Thus the mass of water that condenses is mv − m ′
v ≈ 1.3 g. In order to re-evaporate

it, the system must be heated whereby the saturated vapor pressure increases to p′′
s .

Given that p′′
aV

′′ = (ma/Ma)RT ′′, p′′
a=p0 + �p − p′′

s , and p′′
s V

′′ = (mv/Mv)RT ′′,
we have

p′′
s = ps

(
1 + �p

p0

)
≈ 2570 Pa .

The temperature increase needed is calculated from the Clausius–Clapeyron equa-
tion:

T ′′ − T ≈
(
p′′
s

ps
− 1

)
RT 2

qvMv

= 1.6 ◦C ,

where qv = 2454 kJ/kg denotes the heat of vaporization of water at 20 ◦C.

Problem 6.15.
Calculate the decrease of themelting point of ice after air is replaced by pure nitrogen
at 200 bar! At air pressure of 1 bar and 0 ◦C, 23 ml of nitrogen dissolve in one
liter of water. The heat of fusion of ice is 336 kJ/kg; the densities of ice and water
are 917 kg/m3 and 1000 kg/m3, respectively. Nitrogen does not dissolve in ice.
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The melting point of ice is shifted to a lower temperature because it directly
depends on pressure as dictated by the Clausius–Clapeyron equation and because
more nitrogen is dissolved in water at a higher pressure, which additionally decreases
the chemical potential of water as a solvent. We have

�T = dT

dp
�p − RT 2

M1q f
x1 ,

where M1 is the kilomolar mass of nitrogen and x1 is its mass fraction. From
the Clausius–Clapeyron equation dp/dT = q f / [T (1/ρl − 1/ρs)] and Henry’s law
x1/x ′

1 = p1/p′
1, where x

′
1 denotes the reference concentration of nitrogen in water at

a reference pressure p′
1 and p1 is the pressure of the pure-nitrogen atmosphere, we

obtain

�T = − T

q f

[(
ρ−1
s − ρ−1

l

)
(p1 − p0) + V1

m2

p0
p′
1

p1

]
.

Here p0 stands for the initial air pressure, p′
1 = 0.829 bar is the partial nitrogen

pressure in the air atmosphere, and V1 is the volume of nitrogen dissolved at p0 in a
body of water of mass m2.

With the given data the first term is approximately three times larger than the
second one; we find that �T = −1.91 K.

Problem 6.16.
The electrochemical process in a galvanic cell is summarized by a redox reaction
Zn(s) + Cu2+(aq) � Zn2+(aq) + Cu(s). At 25 ◦C and 1 bar the Gibbs free energy of
reaction �Gr and the enthalpy of reaction �Hr are equal to −212.55 kJ/mol and
−218.66 kJ/mol, respectively. If the mole fractions of the Zn2+ and the Cu2+ ions
in solution are equal to 10−2 and to 10−4, respectively, the reaction is not in equilib-
rium and there is a nonzero electric current between the zinc and copper electrodes
connected by a wire. What external electric voltage must be applied between the
electrodes to stop the redox reaction and consequently the electric current? By how
much does this voltage change if the temperature of the galvanic cell is increased
by 1 K at constant pressure if the mole fractions of both types of ions are unchanged?
Assume that the solutions are ideal!

Suppose that dn moles of solid zinc react with copper ions in solution to give dn
moles of zinc ions in solution and the corresponding amount of solid copper. The
change of the Gibbs free energy in such a process reads

dG = dn (−μZnMZn − μCu2+MCu + μZn2+MZn + μCuMCu) .

In an ideal solution, the chemical potential of zinc ions is given by μZn2+ = μ◦
Zn2+ +

(RT/MZn2+) ln x̃Zn2+ , where μ◦
Zn2+ is the chemical potential in a pure substance and
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x̃Zn2+ is the mole fraction of zinc ions in solution. (An analogous relation holds for
the copper ions Cu2+.) Then

dG = dn

[
�Gr (T, p) + RT ln

x̃Zn2+

x̃Cu2+

]
,

where �Gr (T, p) denotes the Gibbs free energy of reaction at a given temperature
and pressure. Under the given conditions and for dn > 0 one obtains dG < 0; there-
fore, the redox reaction indeed proceeds from left to right and the electrical charge
transferred in the process is equal to de = 2NAe0dn (recall that e0 = 1.6 × 10−19 As).
In other words, dG corresponds to the amount of electrical work that the galvanic
cell can expend φde, where φ is the voltage between the electrodes. Alternatively,
an external battery of the same voltage but opposing polarity may be connected to
the electrodes to stop the redox reaction and consequently the electric current, like
in a compensation measurement of voltage. Finally, we arrive at the so-called Nernst
equation giving the cell voltage

φ(T, p) = 1

2NAe0

[
�Gr (T, p) + RT ln

x̃Zn2+

x̃Cu2+

]
= −1.048 V.

If the two mole fractions are equal, x̃Zn2+ = x̃Cu2+ , the setup is known as the Daniell
cell with a voltage of−1.107 V at standard conditions (25 ◦C and 1 bar). In our case,
however, x̃Zn2+ 
= x̃Cu2+ , which leads to a small correction of voltage of+0.059 V. (If
the electrodes were made from the same metal, one would have �Gr = 0. However,
a nonzero voltage still appears between the electrodes if the two mole fractions are
different, which is exploited in the so-called concentration cell.)

Note that the cell voltage is temperature-dependent. Apart from the explicit tem-
perature dependence in the logarithmic term of the Nernst equation, the Gibbs free
energy of reaction too changes with temperature. At constant pressure, the corre-
sponding change is obtained from

�Gr (T ) − �Gr (T
′) =

∫ T ′

T

(
∂�Gr

∂T

)

p

dT = −
∫ T ′

T
�Sr (T )pdT .

Here the entropy of reaction �Sr = (�Hr − �Gr )/T is calculated from the data
given at 25 ◦C (note that �T = T − T ′ = 1 K is rather small) to give the new value
of�Gr and finally the total change of the voltage of galvanic cell, which is+0.3mV.
(The magnitude of voltage decreases with temperature.)



Chapter 7
Transport Phenomena

Problem 7.1.
The temperature gradient at the surface of the Earth is equal to 0.03 K/m.Calculate
the temperature in the center of Earth, assuming that it is homogeneous and that
the distribution of the heat-emitting radioactive substances is uniform! The thermal
conductivity coefficient is 1 W/mK.

The stationary temperature profile is described by −λ∇2T = q, where λ is
the thermal conductivity coefficient and q is the internal heat source, i.e., heat
generated per unit time per unit volume. Due to spherical symmetry, we have
d2T/dr2 + (2/r) dT/dr = −q/λ which gives T (r) = −(q/6λ)r2 + const . The
constant of integration is determined by the condition that in equilibrium, the heat
radiated into spacemust be equal to the total heat generated by the radioactive sources
which leads to 4πR3q/3 = 4πR2σ [T (R)]4. This gives

T (r) = − 1

2R

dT

dr

∣
∣
∣
∣
r=R

(

R2 − r2
) +

(

−λ

σ

dT

dr

∣
∣
∣
∣
r=R

)1/4

,

where R ≈ 6400 km is the diameter of the Earth and dT/dr |r=R < 0 is the gradient
of temperature at the surface. We find that the temperature in the center of the Earth
exceeds the surface temperature by 9.6 × 104 K. Note that in this model, the surface
temperature is severely underestimated: T (R) = [(λ/σ)dT/dr |r=R]

1/4 = 27 K.

Problem 7.2.
Light shines onto one side of a one-meter-thick layer of ice surrounded by air at
−10 ◦C. Calculate the highest temperature within the layer if the incident energy
flux is equal to 100 W/m2! The absorption coefficient for light in ice is 2 m−1; the
thermal conductivity coefficient of ice is 2.2 W/mK.

The stationary temperature profile is given by the diffusion equation d2T/dz2 =
−q(z)/λ, where z denotes the distance from the irradiated surface, q(z) is the
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internal heat source, and λ is the thermal conductivity coefficient. The absorbed
light can be represented by an internal heat source q = −d j/dz = μ j , yielding
j = j0 exp(−μz) and q = μ j0 exp(−μz). The solution of the heat equation reads
T (z) = − j0 exp(−μz)/λμ + az + b, with boundary conditions T (0) = T (h) = T0
where T0 denotes the ambient air temperature. Finally,

T (z) = j0
λμ

{

1 − exp(−μz) − z

h

[

1 − exp(−μh)
]} + T0 .

The highest temperature within the layer is at a distance

zmax = − 1

μ
ln

([

1 − exp(−μh)
]

/μh
)

= 0.419 m

from the irradiated surface and is equal to −5.36 ◦C.

Problem 7.3.
Water flows through a 10 m-long tube with inner diameter 2 cm and wall thickness
1 cm. The temperature of water at inlet is 100 ◦C and the outside temperature is
0 ◦C. Calculate the temperature of water at outlet if the flow rate through the tube
is 2 l/s! The thermal conductivity coefficient of the wall is 6 W/mK.

We assume that the decrease in water temperature is small, which will be justified
a posteriori. Furthermore, the water temperature across the transverse cross section
of the tube is approximately constant since the flow is turbulent. To support this
statement we note that between the melting and boiling point of water its viscosity
is equal to ∼ 10−3 Ns/kgm. Then the Reynolds number is Re = 2ρvr1/η = 1.27 ×
105 � 1, where r1 is the inner radius of the tube. The large value of Re implies
turbulent flow, and thus one can safely assume that the water temperature at the inner
side of the wall is 100 ◦C.

The rate of heat flow though a closed cylindrical surface at any point within the
wall must not depend on its radius:

Q̇ =
∫

j · dA = −λ
dT

dr
A = −2πλhr

dT

dr

so that dT/dr = −Q̇/2πλhr ; here h denotes the tube length. By taking into account
the boundary conditions T (r1) = T1 and T (r2) = T2,where r1 and r2 are the inner and
the outer radii of the tube, respectively, whereas T1 and T2 are the water temperature
and the ambient temperature, respectively, we obtain

T (r) = T2 − T1
ln(r2/r1)

ln(r/r1) + T1

and Q̇ = −2πλh(T2 − T1)/ ln(r2/r1). Due to the flow of heat into the environment,
water is cooled: Q̇ = −(dm/dt)cp �T = −ρ�V cp �T . We find that
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�T = 2πλh(T2 − T1)

ρ�V cp ln(r2/r1)
= −6.47 K .

This result is approximate since it was obtained by neglecting the decrease of water
temperature along the tube. However, as �T is small the error is not very large. A
more accurate calculation that takes into account the temperature variation along the
tube yields �T = −6.27 K.

Problem 7.4.
How much time does it take for a 10 cm-thick ice layer to grow on a lake surface?
The water temperature is 0 ◦C and the temperature of the wind blowing across the
lake is −2 ◦C. The thermal conductivity coefficient of ice is 1.6 W/mK, its density
is 917 kg/m3, and the heat of fusion is 336 kJ/kg.

The wind ensures that the temperature of air is constant. Due to the upward heat
flow through the ice, water freezes at the bottom of the layer of ice. The heat flux is
given by j = −λ dT/dz, where z is the distance from the water–ice interface. Since
j cannot depend on z, T ∝ z and

| j | = λ
�T

h
,

where �T is the difference between the temperatures of water and wind whereas h
is the thickness of ice. The heat removed from water by conduction equals the heat
released by freezing: q f dm = A| j | dt or h dh = (λ �T/q f ρs) dt , where ρs is the
density of ice, q f is the heat of fusion, and A is the surface area. By integrating from
the initial state with no ice to the final state where the thickness of the ice layer is h
we obtain

t = q f ρsh2

2λ �T
= 4.8 × 105 s .

Problem 7.5.
A large 10 cm-thick copper plate with electrical resistivity ζ = 1.68 × 10−8 �m and
thermal conductivity coefficient 400 W/mK carries an electric current of density
je. One side of the plate is thermally insulated, whereas the other one is covered
by a 2 mm-thick layer of ice which, in turn, is in contact with air at −10 ◦C and
1 bar. Calculate the threshold value of je for the ice to melt! What is the highest
temperature within the copper plate at the threshold je? The thermal conductivity
coefficient of ice is 2.2W/mK, the density of ice is 920 kg/m3, and the heat of fusion
336 kJ/kg. Recall that in Joule heating, the power per unit volume is equal to ζ j2e .
—How does the threshold change when the air pressure is increased to 100 bar?

We denote the thicknesses of plate and ice layer by d and d ′, respectively; the z
axis points along the normal of the plate and the ice layer, with the origin at the
contact of the plate and the insulation. The local temperature at this contact is T0, the
temperature at the copper–ice contact is T1, and the ambient air temperature is T2.
Due to the single-sided thermal insulation, all Joule heat generated within the plate is
released into the ambient air through the ice layer; one can expect that T0 > T1 > T2.
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There are no heat sources in the ice layer; therefore the temperature profile within
this layer must be a linear function of z. On the other hand, the internal heat source
due to Joule heating in the copper plate is given by q = ζ j2e . The temperature profile
within the plate is described by the diffusion equation d2T/dz2 = −q/λ, where
λ is the thermal conductivity coefficient of copper. By integrating twice we have
T (z) = −qz2/2λ + az + b, where a and b are constants to be determined from
boundary conditions: Perfect insulation at z = 0 imposes (dT/dz)(0) = 0, whereas
the continuity of the heat flux at the copper–ice contact means that λ(dT/dz)(d) =
λ′(T2 − T1)/d ′, where λ′ is the thermal conductivity coefficient of ice. Finally, the
temperature profile in copper reads

T (z) = T2 + q(d2 − z2)

2λ
+ qdd ′

λ′ .

Within the ice layer, temperature is highest at the copper–ice contact and to ensure that
the ice does notmelt, this temperature denotedbyT1 must not exceed themeltingpoint
at 1 bar, which is 0 ◦C. This leads to the requirement that q < λ′(Tm − T2)/dd ′ =
110 kW/m3 or je < 2.56 × 106 A/m2. Under these conditions, the highest temper-
ature in the copper plate is measured just next to the insulation and is T0 = 1.4 ◦C.
—According to the Clausius–Clapeyron equation, an increase of the air pressure to
100 bar decreases the melting point by about 0.7 K. The corresponding threshold
current density is j ′e = 2.47 × 106 A/m2.

Problem 7.6.
How much time does it take for a 0.2 mm-diameter water droplet to evaporate at
20 ◦C, provided that the ambient air is dry and that there is no wind so that the only
mode of motion of water molecules in air is diffusion? Assume that the distribution of
vapor around the droplet is stationary at all times, and neglect any effects of gravity.
The diffusion coefficient is 0.2 × 10−4 m2/s, the saturated vapor pressure at 20 ◦C
is 24 mbar, and the surface tension of water is 0.073 N/m. How long does the
droplet evaporate in saturated humid rather than dry air?

The vapor pressure next to the droplet exceeds the saturated vapor pressure ps
by �p. The equilibrium between liquid water and vapor requires that their chemical
potentials are the same so that�p/ρv = �pl/ρl = 2γ/r0ρl (Problem 4.15) or�p =
2γρv/r0ρl , where ρv = p(r0)M/RT and ρl denote the densities of vapor and liquid
water, respectively; γ stands for the surface tension and r0 is the droplet radius. This
gives

p(r0) = ps

(

1 − 2γ

r0

M

RTρl

)−1

.

The pressure gradient drives the mass flux j = −D∇ρv , which is spherically sym-
metric with jr = −(DM/RT ) dp/dr , where we replaced ρv by pM/RT . The total
mass flow rate from the droplet must not depend on r :

�m =
∫

j · dA = −4πr2
DM

RT

dp

dr
= const.
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or (�m/r2) dr = −(4πDM/RT ) dp. We integrate the left-hand side from r0 to ∞
and the right-hand side from p(r0) to p∞, where p∞ stands for the vapor pressure
far from the droplet. This gives

�m = 4πr0
DM

RT
[p(r0) − p∞] .

In a perfectly dry ambient air, p∞ = 0. We take into account that �m = −dm/dt =
−4πr20ρl dr0/dt , rearrange the obtained equality, and integrate it from 0 to t and from
the initial droplet radius a to 0 where the droplet vanishes. Finally

t = − RTρl

DM

∫ 0

a

r0 dr0
p(r0)

= − RTρl

DMps

∫ 0

a

(

1 − 2γ

r0

M

RTρl

)

r0 dr0

= RTρla2

2DMps

(

1 − 4γM

aRTρl

)

= 14 s .

In saturated humid air, p∞ = ps and the dependence of the mass flow rate on r0
is different from that in dry air. In this case we find that

t = − RTρl

DMps

∫ 0

a

(
r0
2γ

RTρl

M
− 1

)

r0 dr0

= RTρla2

2DMps

(
aRTρl

3γM
− 1

)

= 8.7 × 105 s .

Problem 7.7.
Consider two parallel layers of ice separated by a 1 cm-thick layer of still air at a
pressure of 1 bar. The temperature of the top layer is 0 ◦C,whereas the bottom layer
is cooled and at a constant temperature of −15 ◦C. The saturated vapor pressures at
these two temperatures are 6 mbar and 4 mbar, respectively. Estimate the thickness
of ice transferred from the top to the bottom layer in one hour! The diffusion coefficient
for water in air is equal to 0.2 cm2/s and the density of ice is 916 kg/m3.

We denote the thickness of the air layer by h and the distance from the bottom
layer of ice by z. The temperature gradient results in a difference of saturated vapor
pressures across the air layer and thus to a variation of vapor density ρ(z) across
the air. Under stationary conditions, the diffusion equation reads d2ρ/dz2 = 0 with
boundary conditions ρ1 = ρ(0) and ρ2 = ρ(h); this gives ρ(z) = ρ1 + (ρ2 − ρ1)z/h.
As a consequence, a mass flux of vapor j = D(ρ2 − ρ1)/h is established between
the two layers of ice (here D stands for the diffusion constant of water in air),
which results in the thinning of the top layer of ice and the concomitant thickening
of the bottom layer. The mass of ice per unit area transferred in time t is equal
to ρsδ = j t = Dt (ρ2 − ρ1)/h, where δ denotes the change of thicknesses of the
layers of ice and ρs is the density of ice. We use the ideal-gas equation of state
ρi = pi M/RTi (i = 1, 2) to relate the vapor density next to the walls ρi with the
corresponding vapor pressures pi . Here we assume that the temperature of vapor
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at each wall is equal to the temperature of the ice layer Ti ; M = 18 kg/kmol is the
kilomolar mass of water. Finally, we obtain

δ = Dt

ρsh
(ρ2 − ρ1) = DMt

ρshR

(
p2
T2

− p1
T1

)

≈ 11 μm .

Problem 7.8.
Discuss the transport phenomena in a thermocouple: The Seebeck, the Peltier, and
the Thomson effect! —The temperature dependence of the copper–constantan ther-
mocouple voltage is given by φT (T ) = a(T − T0) + b(T − T0)2 with a = 37.54
μV/K, b = 0.0445 μV/K2, and T0 = 0 ◦C. Calculate the Peltier coefficient as well
as the difference of the Thomson coefficients at 20 ◦C!

Consider an electric circuit formed by two different wires A and B (Fig. 7.1). If the
temperatures of the two A − B junctions T1 and T2 are not equal, a voltageφT appears

A

B
1T 2T

I

I

Q1 Q2

Fig. 7.1 Schematic of the transport phenomena in a thermocouple: The hot junction exchanges
more heat with the environment than the cold contact

in the circuit (the Seebeck effect). This voltage is proportional to the difference of
the temperatures of the junctions and the corresponding proportionality factor SAB
is referred to as the Seebeck coefficient: φT = SAB(T2 − T1). On the other hand, the
junction temperatures may be maintained equal while driving an electric current I
through the circuit. In this case one of the junctions releases heat at a flow rate P
while the other junction absorbs heat at the same rate (the Peltier effect). The flow
rate P is proportional to the electric current I , the proportionality factor being the
Peltier coefficient �AB . The Peltier effect originates in the contact potential (i.e., the
difference of the Fermi level of electrons) at the A − B junctionwhich corresponds to
the Peltier coefficient �AB , whereas the Seebeck effect stems from the temperature
variation of the contact potential and the thermodiffusion or the Thomson effect.
In thermodiffusion, a temperature gradient along each wire results in a difference
of electron density, giving rise to an additional voltage

∫ T2
T1

σi (T ) dT (i = A,B).
By writing the Kirchhoff law for a closed circuit, we obtain φT = SAB(T2 − T1) =
�AB(T2) − �AB(T1) + ∫ T2

T1
(σA − σB) dT or

dφT

dT
= SAB = d�AB(T )

dT
+ σA(T ) − σB(T ) .

If the temperatures of the two junctions differ, more heat is exchanged with the
environment at the hot junction than at the cold one. In this case a thermocouple acts
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as a reversible heat engine if Ohmic loss is neglected. Nowwe consider the junctions
at temperatures T and T + �T where�T 
 T and we examine the entropy balance
for electrons in the circuit that carries an electric current I :

�S = −σA(T )I �T

T
+ σB(T )I �T

T
+ �AB(T )I

T
− �AB(T + �T )I

T + �T
= 0 .

The first two terms originate in thermodiffusion and the last two in contact potential;
since we consider a cyclic process for electrons it follows that �S = 0. For an
infinitesimally small temperature difference we have

σB(T ) − σA(T ) = T
d

dT

(
�AB

T

)

and
dφT

dT
= SAB = �AB(T )

T

as well as
d2φT

dT 2
= σB(T ) − σA(T )

T
.

The first and the second derivative of φT can be measured experimentally so as to
determine the temperature dependencies of �AB and σB − σA. With the functional
form of φT (T ) given at the beginning, we obtain �AB(T ) = [a + 2b (T − T0)] T =
11.5 mV and σB(T ) − σA(T ) = 2bT = 26.1 μV/K at T = 20 ◦C.

The derivative dφT /dT can also be derived in a different way. One can use the
Onsager reciprocal relations to analyze the simultaneous transport of electric charge
and heat. The heat flow rate and the electric current (denoted by P and I , respectively)
are both driven by a temperature difference�T and a voltage φ; temperature is equal
to T . We have

P = −L11
�T

T 2
− L12

φ

T

and

I = −L21
�T

T 2
− L22

φ

T
,

where Li j are the transport coefficients and Li j = L ji . The thermovoltage can
be measured by a compensation measurement where the electric current vanishes
(I = 0); this gives φ = −φT = −SAB �T and thus SAB = (L21/L22)/T . On the
other hand, the Peltier effect is observed at �T = 0 where P = −L12φ/T and
I = −L22φ/T . The final result

�AB = P

I
= L12

L22
= L21

L22
= T SAB
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is a special case of Onsager reciprocal relations Li j = L ji which are based on the
time-reversal invariance of the fundamental laws of physics. At the same time, we
recall that in the derivation that involves the entropy balance, one needs to assume
that charge transfer is reversible instead of relying on the relation Li j = L ji .

Problem 7.9.
A 20 cm-diameter black sphere suspended in vacuum is surrounded by a thin black
concentric shell 30 cm in diameter. What is the rate of radiative cooling compared
to that of a bare sphere? The space between the sphere and the shell is evacuated.

We denote the temperatures of the sphere and the shell by T1 and T2, respectively.
The net rate of heat flow from the sphere to the shell is equal to the difference between
the emitted and the absorbed power: P1 = A1σ

(

T 4
2 − T 4

1

)

, where A1 = 4πr21 is the
surface area of the sphere of radius r1 and σ is the Stefan–Boltzmann constant. The
rate of heat flow emitted by the shell toward outside is P2 = −A2σT 4

2 ; A2 = 4πr22
is the surface area of the shell. In the stationary state, one has P1 = P2 if the shell
temperature is to remain constant. This leads to A1T 4

2 − A1T 4
1 = −A2T 4

2 and T 4
2 =

A1T 4
1 / (A1 + A2). The ratio of the rate of heat flow from the shell towards outside

and that of a bare sphere is

P2
P1

= A2T 4
2

A1T 4
1

= A2

A1 + A2
= r22

r21 + r22
= 0.692 .

If the shell radius is only infinitesimally larger than the radius of the sphere, we have
P2/P1 = 1/2 which agrees with the limit of planar surfaces.

Problem 7.10.
The insulation of a Dewar flask can be greatly improved by placing a thin silvered
metal shield into the evacuated gap between the silvered flask walls. How many
shields are needed if the losses due to heat flow are to be reduced by 90%?

This problemcanbe solvedbymathematical induction.Wefirst consider a shield at
a temperature T2 placed between thewalls of temperatures of T1 and T3 > T1. The rate
of heat flow from the hotwall to the shield is equal to P32 = Aσa

(

T 4
3 − T 4

2

)

, whereas
the rate of heat flow from the shield to the cold wall is P21 = Aσa

(

T 4
2 − T 4

1

)

; here
A denotes the surface area of the walls and a is the absorption coefficient. In the sta-
tionary state one has P32 = P21 or T 4

3 − T 4
2 = T 4

2 − T 4
1 , hence T

4
2 = (

T 4
1 + T 4

3

)

/2.
The rate of heat flow is then given by P21 = Aσa

(

T 4
3 − T 4

1

)

/2, i.e., half of the value
in the shield-free configuration.

In the two-shield configuration, the rate of heat flow from the hot wall at a tem-
perature T4 to the first shield at a temperature T3 is P43 = Aσa

(

T 4
4 − T 4

3

)

, whereas
the rate of heat flow from the first shield to the second one at a temperature T2 is
P32 = Aσa

(

T 4
3 − T 4

2

)

and the rate of heat flow from the second shield to the cold
wall at a temperature T1 is P21 = Aσa

(

T 4
2 − T 4

1

)

. In the stationary state all three rates
have to be equal, which gives T 4

2 = 2T 4
1 /3 + T 4

4 /3 and P21 = Aσa
(

T 4
4 − T 4

1

)

/3. In
other words, the rate of heat flow is now a third of that in the shield-free configuration.
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We conclude that the rate of heat flowbetweenwallswith n shields is 1/ (n + 1)-th
part the rate in the shield-free configuration:

P = P0
n + 1

.

In order to reduce heat losses by 90%, one needs to install 9 shields between the
walls of the flask.



Part II
Statistical Physics



Chapter 8
Classical Canonical Ensemble

Problem 8.1.
An infinite vertical cylinder is filled with an ideal monatomic gas. Calculate the heat
capacity of the gas, assuming that its temperature and the gravitational acceleration
do not depend on height! Also consider a cylinder of finite height as well as the case
in which the gravitational acceleration varies with height!

The phase space of a N -particle monatomic gas is spanned by 6N coordinates: 3
coordinates specify the position of each atom (ri ) and 3 coordinates give the corre-
sponding linear momentum (pi ); i = 1, . . . N . As the gas is in thermal equilibrium
with the environment, it has a well-defined (and constant) temperature. Therefore its
behavior is governed by the canonical probability density ρ(E) ∝ exp(−βE) which
depends only on energy E and temperature; β = 1/kBT . The energy contains the
kinetic and the potential terms: E =∑N

i=1

(
p2i /2m + mgzi

)
; here the z-axis points

in the direction opposite to that of the gravitational acceleration g, and m denotes
the mass of a single atom. To calculate the internal energy and the heat capacity,
one must first evaluate the partition function exp (−βF) ∝ ∫ exp(−βE) d�, where
d� = dr1dp1 · · · drNdpN is the element of the phase space. Since the atoms are
independent and identical, the index i can be dropped and we have

exp (−βF) ∝
[∫

A
dx dy
∫ ∞

0
dz
∫ ∞

−∞
dpx

∫ ∞

−∞
dpy

∫ ∞

−∞
dpz

× exp

(

−β

(
p2x + p2y + p2z

2m
+ mgz

))]N

=
{

A
∫ ∞

0
exp (−βmgz) dz

[∫ ∞

−∞
exp

(
β p2x
2m

)

dpx

]3}N
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because the integrals over the different components of the linear momentum are all
independent. In the above result, A is the horizontal cross section of the cylinder.
Given that

∫∞
−∞ exp (−a2x2) dx = √

π/a, we find that

exp (−βF) ∝ AN

[
(2π)3/2m1/2

gβ5/2

]N

.

After taking the logarithm of this result, we calculate the average energy 〈E〉 =
(∂βF/∂β)V = 5N/2β = 5NkBT/2; this represents the internal energyU . Thus the
heat capacity is

cV = 1

Nm

(
∂U

∂T

)

V

= 5kB
2m

= 5NAkB
2M

= 5R

2M
.

Here M denotes the kilomolar mass of the gas, NA = 6 × 1026 kmol−1 is the Avo-
gadro number, and R is the gas constant. (If the potential energy is excluded, the
above results would read 〈E〉 = 3NkBT/2 and cV = 3R/2M , which agrees with the
equipartition theorem.)

In a cylinder of height L one obtains

〈E〉 = 5N

2β
− NmgL

exp (βmgL) − 1

and

cV = R

M

{
5

2
−
[

βmgL

exp (βmgL) − 1

]2
exp (βmgL)

}

.

Limiting cases: In an infinite cylinder or at a low temperature (βmgL → ∞), one
recovers cV = 5R/2M , whereas in a short cylinder where gravity does not matter or
at a high temperature (βmgL → 0) one obtains cV = 3R/2M (Fig. 8.1).

We now extend the analysis by taking into account the decrease of gravitational
acceleration with the distance from the center of the Earth r . In this case g(r) =
g0(Re/r)2, where g0 denotes the gravitational acceleration at the surface of the Earth
and Re the diameter of the Earth. The integral over the momenta remains unaltered
as the variation of g with r only affects the integral over the spatial coordinates.
The potential energy with a reference value of zero at r → ∞ is equal to φ(r) =∫ r
∞ mg(r) dr = −mg0R2

e/r . Upon switching to spherical coordinates we have

exp (−βF) ∝
[

4π
∫ ∞

Re

exp

(
βmg0R2

e

r

)

r2 dr

]N

.

The above integral diverges at infinity. This indicates that the probability distribution
ρ(E) cannot be normalized in the usualmanner because it is not sufficiently localized.
At the same time we note that the potential energy is bounded from above and allows
for unbounded states of atoms with positive energy. These can escape from the gravi-
tational field of the Earth if their velocity exceeds the second cosmic escape velocity.
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mgL
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Fig. 8.1 Heat capacity of an atom in an isothermal atmosphere of height L and at a constant
gravitational acceleration

Problem 8.2.
A straight narrow tunnel is drilled through the center of a planet ofmass and diameter
of M = 2 × 1028 kg and R = 105 km, respectively. The tunnel is filled with argon
at 100 K. The potential energy of an atom of mass m at a distance r from the center
of the planet is given by GmMr2/2R3, where G = 6.67 × 10−11 Nm2/kg2 is the
gravitational constant. Calculate 〈r〉, 〈r2〉, and σ = (〈r2〉 − 〈r〉2)1/2 for a single
atom! The kilomolar mass of argon is 40 kg/kmol.

We first introduce a shorthand α = βGmM/2R3. To evaluate the above averages,
we need to calculate

〈rn〉 =
∫ R
0 exp (−αr2)rndr
∫ R
0 exp (−αr2)dr

for n = 1 and 2. We assume that most of the argon is localized near the center
of the planet so that the upper bound of the integrals can be pushed towards
infinity. Using

∫∞
0 exp (−αr2)dr = √

π/2
√

α,
∫∞
0 exp (−αr2)rdr = 1/2α, as well

as
∫∞
0 exp (−αr2)r2dr = √

π/4α
√

α one then obtains 〈r〉 = 1/
√

απ = 99.4 km,
〈r2〉 = 1/2α = 15520 km2, and σ = (〈r2〉 − 〈r〉2)1/2 = 75.1 km. As 〈r〉 � R, the
above assumption is justified. Note that 〈r2〉 can also be obtained by applying
the equipartition theorem for the potential energy Ep, which states that 〈Ep〉 =
α〈r2〉/β = kBT/2.

Problem 8.3.
A sealed cylinder contains one kilogram of monatomic gas at 20 ◦C. The cylinder
radius and height are 35 cm and 1.5 m, respectively. The cylinder rotates at a
frequency of 50 s−1 about its axis. The kilomolar mass of the gas is 40 kg/kmol.
Calculate the heat capacity of the gas!

In equilibrium established by collisions of atoms with the walls of the container
walls and with each other, the gas rotates together with the container. In a rotating
reference frame, a centrifugal force acts on the atoms and the corresponding centrifu-
gal potential is φ(r) = − ∫ r0 mω2r dr = −mω2r2/2; m, ω, and r denote the mass of
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an atom, the angular velocity, and the distance from the axis, respectively. For each
atom, the rotational contribution to the partition function reads

exp (−βFr ) ∝
∫ Rc

0
exp

(
βmω2r2

2

)

dr = 2πh

βmω2

∫ βmω2R2
c /2

0
exp u du ,

where dr = 2πhr dr and u = βmω2r2/2; Rc and h denote the radius and the height
of the cylinder, respectively. Thus the average energy of N particles due to rotation

〈Er 〉 = N

(
∂βFr
∂β

)

V

= N

{

kBT − mω2R2
c exp (βmω2R2

c/2)

2
[
exp (βmω2R2

c/2) − 1
]

}

,

whereas the corresponding heat capacity is

crV = R

M

⎛

⎝1 −
{

βmω2R2
c

2
[
exp (βmω2R2

c/2) − 1
]

}2

exp

(
βmω2R2

c

2

)
⎞

⎠ .

Limiting cases: In case of slow rotation, small diameter of the cylinder, or high
temperature where βmω2R2

c → 0, we have crV = 0; in the opposite case where
βmω2R2

c → ∞ we obtain crV = R/M as predicted by the equipartition theorem.
With the given data, crV = 5.3 × 10−7R/M which can be neglected compared to the
heat capacity due to translational motion 3R/2M ≈ 311 J/kgK.

Problem 8.4.
An ideal gas held in a spherical container is exposed to an external potential φ(r) =
φ0 ln (r/a),where r is the distance from the center and a = 0.1 m is the radius of the
container; φ0 = 0.05 eV. Calculate the heat capacity per molecule at 20 ◦C! What
is the average distance of a molecule from the center of the container?

The partition function for a single molecule in the above external potential is

exp (−βF) ∝
[∫ ∞

−∞
exp

(

−β p2

2m

)

dp

]3

4π
∫ a

0
exp

(

−βφ0 ln
( r

a

))

r2 dr

=
(
2πm

β

)3/2 4πa3

3

(

1 − βφ0

3

)−1

,

wherewe took into account that exp
(−βφ0 ln(r/a)

) = (r/a)−βφ0 . The partition func-
tion converges only for β < 3/φ0, i.e., at temperatures above Tp = φ0/3kB .

The average energy is 〈E〉 = kBTp

[
3T/2Tp − (1 − Tp/T

)−1
]
, with the corre-

sponding heat capacity at constant volume

CV = kB

[
3

2
+
(
T

Tp
− 1

)−2
]
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equal to 5.25 kB = 7.25 × 10−23 J/K at 20 ◦C.
The average distance of the molecules from the center of the container reads

〈r〉 =
∫ a
0 (r/a)−βφ0 r3 dr
∫ a
0 (r/a)−βφ0 r2 dr

= a
T/Tp − 1

4T/3Tp − 1
,

which gives 0.505 a = 5.05 cm at 20 ◦C. The temperature dependence of 〈r〉 illus-
trates the behavior of the system at Tp: At this temperature, all molecules condense
in the center of the container where the potential diverges, which in turn results in a
diverging partition function (Fig. 8.2).

Fig. 8.2 Average distance of molecules from the center of the logarithmic external potential (solid
line) and the heat capacity (dashed line) plotted as a function of reduced temperature. At T =
Tp , all molecules assemble at the center of the container where the potential diverges. At high
temperatures the molecules behave as if there was no potential: The heat capacity tends to 3kB/2
and 〈r〉 approaches 3a/4

Problem 8.5.
Write the partition function of an ideal monatomic gas at constant temperature and
pressure! Calculate the average volume of such a gas as well as the magnitude of
volume fluctuations!

We start by considering the canonical isothermal–isochoric ensemble—a gas of
N particles in a box of volume V0 at temperature T . The partition function reads

Z(N , V0, T ) = (2 j + 1)N

N !h3N
∫

exp (−βE) dNp dNr .

The prefactor of (2 j + 1)N/N !h3N results from the quasi-classical treatment; here j
denotes the angular momentum of each atom and h = 6.626 × 10−34 Js is the Planck
constant. We introduce the reduced spatial coordinates s so that dr = V0 ds; thus

Z(N , V0, T ) = (2 j + 1)NV N
0

N !h3N
∫

exp (−βE) dNp dN s .
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Now imagine a tiny cylinder with a freely moving piston located in the box (Fig. 8.3).
We denote the number of atoms inside the cylinder by M ; consequently, N − M
atoms remain in the box but outside the cylinder. We further assume that M � N .

N M

T

–
V0

M
V
T

Fig. 8.3 Box-and-cylinder arrangement used in the derivation of the partition function of the
isothermal–isobaric ensemble

As before, the volume of the box is denoted by V0 and the variable cylinder volume is
V . The temperatures of gas in both subsystems are the same. The partition function
of the whole system (i.e., the gas in the cylinder and the gas in the box) is equal
to the product of the partition functions for the two subsystems, and volume V
is an additional variable in phase space, i.e., Z ∝ ∫V Z(M, V, T )Z(N − M, V0 −
V, T ) dV . Then we have

Z ∝
∫

V

(2 j + 1)MV M

M !h3M dV
∫

exp (−βEM) dMp dMs

× (2 j + 1)N−M(V0 − V )N−M

(N − M)!h3(N−M)

∫

exp (−βEN−M ) dN−Mp dN−Ms ,

where EM and EN−M are the energies of the two subsystems. Since V � V0 we can
write (

1 − V

V0

)N−M

≈ exp

(

− (N − M)V

V0

)

= exp (−β pV ) ,

where we used the ideal gas equation of state p = (N − M)kBT/V0 for the gas
inside the box (without the cylinder). Thus

Z ∝
∫

V

(2 j + 1)MV M

M !h3M dV
∫

exp
(−β(EM + pV )

)
dMp dMs

× (2 j + 1)N−MV N−M
0

(N − M)!h3(N−M)

∫

exp (−βEN−M ) dN−Mp dN−Ms .
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The second factor is independent of the variable cylinder volume V and represents
the phase integral Z(N − M, V0, T ) of a gas of N − M atoms contained in a box
with constant volume V0; Z(N − M, V0, T ) does not involve the gas in the cylinder.
From the first factor we deduce the partition function for a gas inside the cylinder
subject to p = const. and T = const. which reads

Z(M, p, T ) ∝ (2 j + 1)M

M !h3M
∫

V
V MdV

∫

exp (−βHM) dMp dMs ,

where V acts as an additional phase-space coordinate. Note that now the argument
of the Boltzmann factor contains enthalpy HM = EM + pV rather than energy. The
probability density for a M-particle system is

ρM ∝ V M exp (−βHM) .

The ensemble defined by the probability density ρM = ρM(T, p) is referred to as
isothermal–isobaric.

In an ideal gas, the energy EM is of an entirely kinetic origin; the interactions
between atoms are absent. After evaluating the integrals over linear momenta and
over reduced coordinates, we are left with

Z(M, p, T ) ∝ (2 j + 1)M

M !h3M
(
2πm

β

)3M/2

IM ,

where m is the mass of each single atom and

IM =
∫ ∞

0
V M exp (−β pV ) dV = M !

(β p)M+1
.

is integrated by parts in M − 1 steps. Therefore the average volume of the gas is

〈V 〉 =
∫
dMp dMs

∫
V ρMV dV

∫
dMp dMs

∫
V ρM dV

= IM+1

IM
= M + 1

β p
≈ M

β p
.

Here we rederived the ideal-gas equation of state p = MkBT/〈V 〉. On the other
hand, the magnitude of volume fluctuations is quantified by σV = √〈V 2〉 − 〈V 〉2.
In order to evaluate σV we also need to calculate

〈V 2〉 =
∫
dMp dMs

∫
V ρMV 2 dV

∫
dMp dMs

∫
V ρM dV

= IM+2

IM
= (M + 2)(M + 1)

(β p)2
.

Thus σ2
V = 〈V 2〉 − 〈V 〉2 ≈ M/(β p)2 and

σV

〈V 〉 = 1√
M

.
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In the thermodynamic limit where M → ∞, volume fluctuations are negligible.

Problem 8.6.
After the vapor of a nematogenic substance is exposed to a magnetic field of strength
H, the energy of eachmolecule changes by E(a,H) = −γ(a · H)2,where a is the unit
vector along the molecular long axis. Calculate the average and the fluctuations of
E(a,H) of one liter of rarefied vapor at 1 mbar and 300 K with H = 106 A/m and
γ = 5 × 10−35 Vsm2/A! What is the value of the nematic order parameter given by
S = 〈[3(a · h)2 − 1]/2〉? Here h represents a unit vector directed along the magnetic
field and 〈· · · 〉 stands for thermal averaging.

In a rarefied vapor, molecules are independent from each other; therefore, the
N -molecule magnetic contribution to the partition function can be written as

exp (−βF) ∝
[∫ π

0
exp (βγH 2 cos2 θ)2π sin θ dθ

]N
.

Here θ is the angle between the molecular long axis and the magnetic field so that
cos θ = a · h. Upon inserting the numerical data we find that βγH 2 � 1 so that the
exponent can be expanded in a Taylor series. In doing so, some care is needed because
fluctuations of the magnetic energy involve the derivative

(
∂2βF/∂β2

)
H and thus

the partition function must be calculated exactly up to second order in β. We obtain

exp (−βF) ∝
[∫ π

0

(

1 + βγH 2 cos2 θ + β2γ2H 4 cos4 θ

2

)

2π sin θ dθ

]N

=
[

4π

(

1 + βγH 2

3
+ β2γ2H 4

10

)]N

.

To lowest order, the average magnetic energy is

〈Em〉 =
(

∂βF

∂β

)

H

≈ −NγH 2

3
= −4.0 × 10−4 J .

Here the number of molecules is calculated using the ideal-gas equation of state:
N = pV/kBT . The square of energy fluctuations is given by

σ2
E = −
(

∂2βF

∂β2

)

H

≈ 4Nγ2H 4

45

so that σE ≈ 2
√
NγH 2/3

√
5 = 7.3 × 10−14 J. When evaluating the nematic order

parameter, we recall that βγH 2 � 1 and again stick to the lowest order expansion
to find that

S =
∫ π

0 (3 cos2 θ − 1) exp (βγH 2 cos2 θ)2π sin θ dθ

2
∫ π

0 exp (βγH 2 cos2 θ)2π sin θ dθ
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≈ 2βγH 2

15
= 1.6 × 10−3 .

Problem 8.7.
The 500 nm gap between two parallel plates is filled by a dilute solution of
tobacco mosaic virus (TMV). The virus is a thin rigid 300 nm-long rod. Calcu-
late the nematic order parameter of the viruses! The order parameter is defined by
S = 〈(3 cos2 θ − 1

)
/2
〉
, where θ is the angle between the plate normal and the long

axis of the virus. Redo the calculation for the case where the gap between the plates
is reduced to 100 nm!

As far as the orientational order of the viruses is concerned, the relevant part of
TMV phase space consists of the transverse coordinate z (here measured from the
center of the gap) and of the angle between the long axis and the normal of the plates
denoted by θ. If the gap width h exceeds the length of the virus d, the orientation
of viruses is unrestricted and θ can take any value between 0 and π/2. (NB: Due
to the mirror symmetry of the viruses, angles between π/2 and π correspond to the
same physical states and hence considering these values would unnecessarily double
the phase space.) The tilt determines the range of the allowed location of the center-
of-mass reaching from −zθ = − (h − d cos θ) /2 to zθ = (h − d cos θ) /2. Here we
spell out only the part of the partition function that affects 〈cos2 θ〉, which reads

exp
(−βF(h > d)

) =
∫ π/2

0
sin θ dθ

∫ zθ

−zθ

dz = h − d

2

and the average appearing in the nematic order parameter is

〈
cos2 θ
〉 = exp

(
βF(h > d)

)
∫ π/2

0
cos2 θ sin θ dθ

∫ zθ

−zθ

dz = 1

3

h − 3d/4

h − d/2
.

If the gap width is smaller than the length of viruses, h < d, the tilt must be larger
than θmin = arccos(h/d) and we obtain

exp
(−βF(h < d)

) =
∫ π/2

θmin

sin θ dθ
∫ zθ

−zθ

dz = h2

2d

and
〈
cos2 θ
〉 = exp

(
βF(h < d)

)
∫ π/2

θmin

cos2 θ sin θ dθ
∫ zθ

−zθ

dz = h2

6d2
.

Consequently, the nematic order parameter is given by

S(h) =
{(

h2/2d2 − 1
)
/2, h < d

(1 − 2h/d)−1 /4, h > d
.
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As shown in Fig. 8.4, S < 0 for all gap widths h, indicating that on average the
viruses orient perpendicular to the plate normal. In the limit of h → 0, all viruses
are forced to lie within the xy plane and one has S = −1/2, whereas at h/d � 1
the orientation of the viruses is completely arbitrary with S = 0. —For h = 500 nm
and 100 nm we have S = −0.107 and −0.472, respectively.

0 0.5 1.5 2.51
h d/

–0.2

–0.5

–0.1

0

32

S

–0.3

–0.4

Fig. 8.4 Nematic order parameter of a solution of tobacco mosaic virus confined to a gap between
parallel plates vs. gap width. In a very thin gap, all rods lie flat between the plates and S = −1/2,
whereas in a very thick gap which approaches a bulk ensemble we have S → 0

Problem 8.8.
The elastic energy of a bond connecting two neighboring monomers in a poly-
mer chain depends on the angle θ between the long axes of the monomers and
reads φ(θ) = −φ0 cos θ. Because of steric interactions between the monomers, θ is
restricted to values between 0 and �. Compare the conformational heat capacity of
a chain with � = 2π/3 to that of a chain without steric restrictions! Temperature is
20 ◦C and φ0 = 0.05 eV.

The state of a chain consisting of N + 1 monomers is specified by the N inde-
pendent bond angles (Fig. 8.5). We are interested only in the conformational part of
the partition function given by

Fig. 8.5 Polymer chainwhere the energy of the bond between nearest-neighbormonomers depends
on angle θ
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exp (−βF) =
[∫ �

0
exp (βφ0 cos θ)2π sin θ dθ

]N

=
{

2π(βφ0)
−1
[
exp (βφ0) − exp (βφ0 cos�)

]
}N

.

The average intramolecular energy is equal to

〈E〉 = dβF

dβ
= N

[
1

β
− φ0

exp (βφ0) − cos� exp (βφ0 cos�)

exp (βφ0) − exp (βφ0 cos�)

]

and the heat capacity is

C = d〈E〉
dT

= NkB

[

1 − u(βφ0)
2

(
1 − cos�

1 − u

)2
]

,

where u = exp
(
βφ0(cos� − 1)

)
. For a chainwithout steric restrictions (� = π) this

givesC = 0.69 NkB , whereas in a chainwith restrictions the heat capacity is smaller;
for � = 2π/3, C ′ = 0.50 NkB . The ratio of the two heat capacities is C ′/C = 0.72.

Problem 8.9.
Calculate the heat capacity of a polymer chain if the elastic energy of a bond between
neighboring monomers is proportional to the angle between the long axes of the
monomers, i.e., φ = φ0θ! The chain consists of 100 monomers, φ0 = 0.05 eV, and
temperature is 20 ◦C.

Since N bonds in a N + 1-monomer chains are independent, the conformational
part of the partition function reads

exp (−βF) =
[∫ π

0
exp (−βφ0θ) 2π sin θ dθ

]N

=
[

2π
1 + exp (−πβφ0)

1 + (βφ0)
2

]N
.

The average energy of the chain is

〈E〉 = dβF

dβ
= Nφ0

[
π

exp(πβφ0) + 1
+ 2βφ0

1 + (βφ0)2

]

,

whereas the heat capacity plotted in Fig. 8.6 is

C = NkB

{
π2 exp(πφ0/kBT )

(kBT/φ0)2
[
exp(πφ0/kBT ) + 1

]2 + 2
[
1 − (kBT/φ0)

2
]

[
1 + (kBT/φ0)2

]2

}

.
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At T = 0, the heat capacity of a single bond would be equal to 2kB (if, of course, the
classical physics involved were applicable down to absolute zero), whereas at high
temperatures it goes to 0. For a 100-monomer chain at 20 ◦C,C = 1.40 × 10−21 J/K.

Fig. 8.6 Heat capacity of a polymer chain where the bond energy is proportional to the angle
between the long axes of neighboring monomers

Problem 8.10.
Vinyl polymers can be represented by chains of identical elongated monomers, where
each monomer forms a fixed angle with its neighbors but is free to rotate about the
long axis of either neighbor. Calculate the persistence length

�p = lim
N→∞〈u1 · r〉

of such a chain! Here N denotes the number of monomers in a chain, r is the vector
connecting the chain ends, u1 is a unit vector defining the orientation of the monomer
at the beginning of the chain, and 〈· · · 〉 stands for averaging over conformations.
Calculate 〈r2〉 for a long vinyl chain! Finally, consider the limiting case of a perfectly
flexible, freely jointed chain!

The length of each monomer is denoted by a and its orientation is described by
a unit vector ui . As the angle between neighboring monomers is fixed, ui · ui+1 =
cos θ = const., whereas the rotation around ui parametrized by the azimuthal angle
φi is unhindered. In order to calculate the persistence length one must evaluate

〈u1 · r〉 = a
N∑

i=1

〈u1 · ui 〉 ,

where r = a
∑N

i=1 ui . Similarly,

〈
r2
〉 = 〈r · r〉 = a2

N∑

i=1

N∑

j=1

〈
ui · u j
〉 = a2
(

N +
∑

i = j

〈ui · u j 〉
)

.
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In a freely jointed chain, all ui are uncorrelated; hence 〈ui · u j 〉 = δi j . In this limit,
the persistence length �p which represents a measure for chain stiffness is equal to
the monomer length a: Orientational correlations between monomers do not even
reach to the nearest neighbors. At the same time, we also find that 〈r2〉 = Na2—a
well-known result from diffusion in three dimensions.

In a vinyl chain that is not fully flexible, the orientations of two monomers are
correlated, with 〈ui · u j 〉 = 0 even for i = j . Consider two neighboring monomers
at sites i and i + 1. In addition to the vector ui we also define the vectors vi and wi

so as to construct an orthonormal triad fixed to the section of the chain just before
site i + 1. One can write

ui+1 = cos θ ui + sin θ cosφi vi + sin θ sin φi wi

and analogously

ui+2 = cos θ ui+1 + sin θ cosφi+1 vi+1 + sin θ sin φi+1 wi+1 .

Nowwe calculate 〈ui · ui+2〉. When averaging over the azimuthal angles φi and φi+1,
we take into account that themonomers can rotate freely around the long axes of their
neighbors, and thus the Boltzmann factor does not depend on these two angles. In
this case one is left with 〈ui · ui+2〉 = cos2 θ alone. By repeating the above procedure
one realizes that in general

〈ui · ui+k〉 = cosk θ = νk .

The magnitude of this result decreases with increasing k, indicating that with
increasing inter-monomer distance the orientational correlations becomeweaker and
weaker. Here we introduced cos θ = ν.

The persistence length is thus equal to

�p = lim
N→∞ a

N∑

i=1

〈u1 · ui 〉 = lim
N→∞ a

N−1∑

k=0

〈u1 · uk+1〉 = a
∞∑

k=0

νk = a

1 − ν
.

In the last step, we recognized that the terms to be summed constitute an infinite
geometric series. In a fully stretched-out chain where θ = 0 and ν = 1, �p diverges.

The average 〈r2〉 can be recast as

〈
r2
〉 = a2
[

N + 2
N−1∑

k=1

(N − k)νk

]

= a2
[

N + 2
ν(νN − 1) + Nν(1 − ν)

(1 − ν)2

]

.
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(The above sumwas evaluated by taking the derivative of the geometric series
∑

k νk

with respect to ν.) For a very long chain (N → ∞) one has

〈
r2
〉 = Na2

1 + ν

1 − ν
.

In a “tetrahedral” chain with θ = 70.5◦ (ν = 0.3338) we obtain 〈r2〉 = 2.002 Na2

(which is approximately twice as much as for the freely jointed chain), the corre-
sponding persistence length being 1.501 a.

Problem 8.11.
Calculate the persistence length and the average square of the chain end-to-end
distance for a long Langevin chain! In a Langevin chain, the energy of the bond
connecting the neighboring monomers is given by φ(θ) = −φ0 cos θ, where θ is the
angle between their long axes. The temperature is 300 K and φ0 = 0.05 eV.

The persistence length �p and the average square chain end-to-end distance 〈r2〉
are calculated by following the same steps as in Problem 8.10. We first reevaluate
the average of the dot product ui · ui+k . After averaging over azimuthal angles,
some terms vanish like in Problem 8.10 and we are left with the averages over the
independent polar angles θi :

〈ui · ui+k〉 =
〈k−1∏

j=0

cos θi+ j

〉

=
k−1∏

j=0

〈
cos θi+ j

〉

=
[∫ 1

−1 exp (βφ0 cos θi ) cos θi d cos θi
∫ 1
−1 exp (βφ0 cos θi ) d cos θi

]k

=
(

coth βφ0 − 1

βφ0

)k
.

Now we denote coth βφ0 − 1/βφ0 by ν and immediately use the expressions for
�p and

〈
r2
〉
derived in Problem 8.10. At high temperatures one has βφ0 → 0 and

thus ν → 0 so that the chain behaves as if it were freely jointed despite the nonzero
conformational energy: �p amounts to one monomer length. In the low-temperature
limit (βφ0 → ∞, ν → 1) the chain is fully extended and �p diverges. At 300 K we
obtain �p = 2.11 a and

〈
r2
〉 = 3.21 Na2.

Problem 8.12.
In an alkane chain, a quartet of four consecutive carbon atoms can bond in three
different ways: trans (t), gauche+ (g+), or gauche− (g−). The two gauche bonding
energies are identical and exceed the trans bonding energy by 0.025 eV. For steric
reasons, the “neighboring” quartets which share three consecutive carbon atoms
cannot appear in conformations g+g− and g−g+.

Calculate the partition function for the conformations of an n-pentane molecule
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quartet
︷ ︸︸ ︷

CH3 − CH2 − CH2 − CH2 − CH3 !
︸ ︷︷ ︸

quartet

At what temperature do 55% of the molecules contain exactly one quartet in the trans
conformation on average? Estimate the fluctuations of the conformational energy in
one liter of gaseous n-pentane at this temperature and a pressure of 1 bar!

Some of the n-pentane conformations are shown in Fig. 8.7. We set the confor-
mational energies of each carbon atom quartet in the trans (t) and gauche (g+, g−)
conformations to 0 and w > 0, respectively.

Fig. 8.7 Some of the conformations of n-pentane. From left to right: t t , tg−, and the “prohibited”
g+g−. The gray rods represent the carbon chain, whereas the protruding rods shown in white
correspond to hydrogen atoms

The energies of all possible conformations of the n-pentane molecule are listed in
the table below:

Conformation t t t g+ t g− g+ t g− t g+ g+ g− g−
Energy 0 w w w w 2w 2w

The conformational contribution to the partition function of a n-pentane chain is
given by

exp (−βF) = 1 + 4 exp (−βw) + 2 exp (−2βw) .

There are four conformations featuring exactly one trans carbon atom quartet (tg+,
tg−, g+t , and g−t), and the probability of such bonding is

P = 4 exp (−βw)

1 + 4 exp (−βw) + 2 exp (−2βw)
= 4u

1 + 4u + 2u2
.

Here u = exp (−βw). To find the temperature where P = 0.55, one has to solve a
quadratic equation 2Pu2 + 4(P − 1)u + P = 0. The physically relevant solution is
u0 = 0.407, yielding T = −w/kB ln u0 = 322 K.
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For one molecule, the magnitude of fluctuations of the conformational energy is
obtained from

σ2
E = −d2βF

dβ2
= 4w2 u0

(
1 + 2u0 + 2u20

)

(
1 + 4u0 + 2u20

)2 .

For N = pV/kBT molecules in a gaseous sample confined to volume V at pressure
p one has

(σE )N = σE

√
N = 9.45 × 1010w = 2.36 × 109 eV .

Problem 8.13.
In a simple model of thermal expansion of solids, one assumes that the atoms can
be regarded as independent one-dimensional anharmonic oscillators in a potential
given by φ(x) = ax2 − bx3 + cx4. How does the average position of such an oscil-
lator depend on temperature in the range where b〈x3〉 � kBT and c〈x4〉 � kBT ?
Calculate the linear thermal expansion coefficient of such a solid! Apply the result
to a diatomic molecule where the atoms are bound by the Lennard-Jones potential
φ(r) = φ0

[
(r/r0)−12 − 2(r/r0)−6

]
! Assume that the temperature is low enough so

that φ0 � kBT yet high enough so that classical mechanics still applies.

We seek 〈x〉 = ∫∞
−∞ x exp

(−βφ(x)
)
dx/
∫∞
−∞ exp

(−βφ(x)
)
dx . Because of the

smallness of the anharmonic terms in the potential, the exponential factor exp(
β(bx3 − cx4)

)
appearing in the integrands can be expanded into 1 + β(bx3 − cx4),

thereby simplifying the algebra:

〈x〉 =
∫∞
−∞ exp (−βax2)

[
x + β(bx4 − cx5)

]
dx

∫∞
−∞ exp (−βax2)

[
1 + β(bx3 − cx4)

]
dx

=
∫∞
0 exp (−βax2)βbx4 dx

∫∞
0 exp (−βax2)(1 − βcx4) dx

.

Note that the odd terms in the integrands do not contribute as the integration inter-
val is symmetric. Upon inserting

∫∞
0 x2n exp (−βax2) dx = (2n − 1)!!√π/2n+1

(βa)n+1/2, we find that to the lowest order

〈x〉 ≈ 3bkBT

4a2
.

Thus the linear thermal expansion coefficient is equal to

α = 1

�

d�

dT
= 1

�

d〈x〉
dT

= 3bkB
4a2�

,

where � denotes the equilibrium distance between neighboring atoms. One can see
that thermal expansion cannot be described with a harmonic potential (b = c = 0)
since in this case α = 0.
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The result can also be used to study the expansion of a diatomic molecule. The
Lennard-Jones potential has a minimum at r = r0, and at low enough temperatures
the equilibrium atom-to-atom distance does not depart significantly from r0. In this
regime the potential can be Taylor-expanded around r = r0, yielding

φ(r ≈ r0) = φ0

(

−1 + 36

r20
x2 − 252

r30
x3 + 1113

r40
x4 + . . .

)

,

where x = r − r0 (Fig. 8.8). From here we now extract the coefficients a, b, and c.
By taking � = r0, we finally have

0 0.5 1.5 21
r r/ 0

0

–2

–1

0( )/r

1

2

Fig. 8.8 Lennard-Jones potential (solid line) is repulsive for r < r0 and attractive for r > r0. Close
to the minimum it can be approximated by a fourth-order polynomial (dashed line)

α ≈ 7kB
48φ0

.

It turns out that the partition function calculated for a particle in a Lennard-Jones
potential does not converge, whereas the partition function for the anharmonic poten-
tial does exist. This apparent contradiction is resolved as follows: In this Problem,
we are interested in the thermal expansion of a diatomic molecule, which is a bonded
state of one atom in the potential of the other by definition, and not in the behavior of
free atoms.As the atoms are bonded, the interatomdistance never differs significantly
from its equilibrium value and thus it is plausible to replace the exact dependence
φ(r) by a fourth-order polynomial.

Problem 8.14.
A sensitive spring balance contains a spring of stiffness of 10−2 N/m. Estimate the
smallest mass that can be still weighed using such a balance at 300 K!

The theoretical sensitivity of a balance is determined by the thermal fluctuations
of spring extension. The elastic energy of the spring is equal to E = Kx2/2, where
x is extension and K is the stiffness of the spring. The massm to be weighed and the
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extension x are related by Hooke’s law Kx = mg, where g is the gravitational accel-
eration. From the equipartition theorem one has 〈E〉 = K 〈x2〉/2 = kBT/2, which
can be used to estimate the amplitude of extension fluctuations

√〈x2〉 = √
kBT/K .

Thus

m ≈ K
√〈x2〉
g

=
√
KkBT

g
= 6.4 × 10−13 kg .

Problem 8.15.
One end of a freely jointed polymer chain consisting of 106 monomers of non-
negligible mass is anchored to a long rigid rod. Calculate the average height of
the center of mass measured relative to the anchored end as well as its fluctua-
tions at 300 K! The length of each monomer is 5 nm and the kilomolar mass of the
monomer is 3200 kg/kmol. Disregard any interaction between the supporting rod
and the chain.

Thepotential energyof thepolymer consistingof N monomers is E =∑N
j=1 mgl j ,

where m is the monomer mass, g is the gravitational acceleration, and l j is the ver-
tical coordinate of j-th monomer relative to the anchored end. The average vertical
coordinate of the center of mass of the polymer is located at

〈z∗〉 =
∑N

j=1 l j

N
= 〈E〉

Nmg
,

which implies that 〈z∗〉 can be obtained from the average potential energy 〈E〉. We
parametrize the orientation of a given monomer by the polar angle θ j between the
long axis of the monomer and the z axis, and the azimuthal angle, which is irrelevant
in the present context. The vertical coordinate of the j-th monomer depends on the
orientation of all monomers between the anchored end and itself, and is given by
l j = a
(∑ j−1

i=1 cos θi + cos θ j/2
)
, where a is the monomer length. After rearranging

the terms we have

E = mga
N∑

j=1

(

N + 1

2
− j

)

cos θ j .

The relevant part of the partition function then reads

exp (−βF) ∝
∫ π

0
· · ·
∫ π

0
exp

⎛

⎝−α

N∑

j=1

(

N + 1

2
− j

)

cos θ j

⎞

⎠
N∏

j=1

sin θ jdθ j .

where we introduced α = βmga. Although the location of a given monomer does
depend on the location of the monomers that connect it to the anchored end (and thus
the system is not ideal as it does not consist of independent particles), the partition
function can still be factorized. After integrating over all θ j one obtains
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exp (−βF) ∝
N∏

j=1

2 sinh
(
α(N + 1/2 − j)

)

α(N + 1/2 − j)

≈ 2N
N∏

j=1

[

1 + α2

6

(

N + 1

2
− j

)2
]

.

Here we took into account that Nα � 1; the system is in the high-temperature limit.
Apart from an irrelevant additive constant,

βF = −α2

6

⎡

⎣N

(

N + 1

2

)2
− 2

(

N + 1

2

) N∑

j=1

j +
N∑

j=1

j2

⎤

⎦ .

After evaluating the two sums we find that

βF = − (βmga)2

72

(
4N 2 − 1

)
N

and thus

〈z∗〉 = 〈E〉
Nmg

= 1

Nmg

dβF

dβ
= −βmga2

36

(
4N 2 − 1

) = −36 nm.

The center of mass of the polymer is thus slightly below the anchored end. Note that
it scales approximately as N 2 rather than with N , which is a signature of the nonideal
nature of the system. If gravity were switched off (g = 0), 〈z∗〉 = 0 as expected. The
fluctuations of the vertical position of the center of mass are given by

σz∗ = 1

Nmg

√

−d〈E〉
dβ

= a

6

√
4N 2 − 1

N
= 1.7 μm.

As σz∗ � |〈z∗〉|, the state of the polymer chain is largely unaffected by gravity, which
is anticipated since Nα � 1.



Chapter 9
Equation of State

Problem 9.1.
The electric dipole moment of a water molecule is equal to 6.1 × 10−30 Asm. Cal-
culate the electric susceptibility of saturated water vapor at 100 ◦C! Analyze the
behavior of polarization fluctuations!

In absence of an external electric field, the orientational distribution of water
molecules is isotropic; therefore the macroscopic electric polarization of the sample
vanishes. In an external field E, on the other hand, the dipoles on average align along
the field which gives rise to an electric polarization P = n〈pe · E/E〉 = n〈pe cos θ〉
(Fig. 9.1); here pe is the dipole moment of each molecule, n is the number density of

E
P

= 0
= 0

E >
P >

0
0

E

pe

Fig. 9.1 Electric dipole moment of water molecules points along the twofold axis from the oxygen
atom toward the midpoint between the hydrogen atoms. In absence of an external field, the dipoles
in vapor are orientationally disordered and the overall polarization of the sample is 0. After the field
is switched on, the dipoles partly align along the field which results in a nonzero net polarization

themolecules, and θ is the angle between a dipole and the field. The energy of a dipole
in the external field is equal to −pe · E = −peE cos θ. The average 〈pe cos θ〉 only
depends on the orientational degrees of freedom, and given the uniaxial symmetry
of the problem with respect to E the infinitesimal element of the phase space of
interest is 2π sin θ dθ. In vapor at low densities, interactions between the dipoles can
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be neglected and we have

〈pe cos θ〉 = pe

∫ π

0 cos θ exp (β peE cos θ)2π sin θ dθ
∫ π

0 exp (β peE cos θ)2π sin θ dθ
= peL

(
peE

kBT

)

,

where we introduced the Langevin function

L(u) = coth u − 1

u

plotted in Fig. 9.2. The same result can also be obtained by evaluating the partition
function

exp (−βFe) ∝
[∫ π

0
exp (β peE cos θ)2π sin θ dθ

]N

=
[

4π
sinh(β peE)

β peE

]N

(here written for N molecules), taking its logarithm, and then calculating the deriva-
tive of βFe with respect to βE . Thus we directly obtain N 〈pe cos θ〉.

When talking about electric susceptibility χ, one usually thinks of weak electric
fields where polarization is proportional to field strength: P = χε0E . In the E → 0

0 5 1510

0.6

0.2

0.4

0.8

1

20
0

p E k Te B/

P np/ e

P e/npNN
√

Fig. 9.2 Polarization of an ideal gas consisting of molecules that carry electric dipoles (solid
line) and polarization fluctuations (dotted line) as a function of the reduced electric field strength
peE/kBT ; P/npe coincides with the Langevin function L(u) = coth u − 1/u. The limiting behav-
ior of the polarization in a weak field or, alternatively, at a high temperature, is given by the Curie
law (dashed line)

limit one can expand the Langevin function coth u − 1/u ≈ u/3, so that the induced
polarization is equal to P = np2e E/3kBT . This is theCurie lawwith the characteristic
temperature dependence χ ∝ 1/T . The particle density can now be expressed from
the ideal gas equation of state ps = nkBT , where ps is the saturated vapor pressure
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at 100 ◦C (≈ 1 bar). We obtain

χ = p2e ps
3ε0k2BT

2
= 5.3 × 10−3 .

The amplitude of polarization fluctuations around the average is calculated as
follows:

σ2
P = 〈P2〉 − 〈P〉2 = − 1

V 2

(
∂2βFe

∂(βE)2

)

V

= 1

V

(
∂〈P〉
∂βE

)

V

= N

(
kBT

EV

)2
{

1 −
[

peE/kBT

sinh(peE/kBT )

]2}

.

At high temperatures or in a weak field where kBT/peE � 1, σP approaches
npe/

√
3N , whereas at low temperatures, we have σP ≈ nkBT/E

√
N (Fig. 9.2).

In both cases fluctuations are negligible in the thermodynamic limit.

Problem 9.2.
Analyze the high- and the low-temperature behavior of the orientational contribution
to the heat capacity in a system of independent electric dipoles in an external electric
field!

The average energy−〈pe cos θ〉E is readily obtained from the result for 〈pe cos θ〉
derived in Problem 9.1. The heat capacity per dipole is then equal to

C = kB

[

1 −
(
peE

kBT

)2

sinh−2

(
peE

kBT

)]

.

At low temperatures we have—again assuming that classical physics applies down
to absolute zero—

C ≈ kB

[

1 − 4

(
peE

kBT

)2

exp

(

−2peE

kBT

)]

→ kB ,

whereas at high temperatures

C ≈ kB
3

(
peE

kBT

)2

→ 0 .

The high-temperature result is easy to interpret: In this limit, all orientations of the
dipoles are equiprobable, and a further increase of internal energy by heating is not
possible.

Problem 9.3.
At 20 ◦C, the relative permittivity of liquidwater is equal to 80 andmainly originates
in the permanent electric dipoles of the molecules. Calculate the value of the dipole
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moment by including the dipole–dipole interaction represented by the local field
Eloc = E + P/3ε0,where E is the strength of the external field and P is polarization!

The average component of the dipole along the external field is calculated in
Problem 9.1. We use this result, substitute E by the local field Eloc, and expand the
Langevin function around zero. This gives

P ≈ np2e Eloc

3kBT
= np2e

3kBT

(

E + P

3ε0

)

,

where n is the number density of the molecules. Thus

P = 3a

1 − a
ε0E ,

where a stands for np2e/9kBT ε0. Evidently, 3a/(1 − a) represents the electric sus-
ceptibility χ = ε − 1 so that a = (ε − 1)/(ε + 2). Thus we derived the Clausius–
Mossotti formula

ε − 1

ε + 2
= np2e

9kBT ε0

which states that at a constant temperature, the ratio (ε − 1)/(ε + 2) is proportional
to the density of matter. The electric dipole moment of the water molecule obtained
using this model with ε = 80 is equal to 3.06 × 10−30 Asm, which is approximately
one half of the correct value.

Problem 9.4.
Explore the ferroelectric–paraelectric transition in the mean-field approximation
where one assumes that each dipole is exposed to a local field Eloc = P/3ε0, P
being the electric polarization!

We use the results obtained in Problem 9.1, replacing the external electric field E
in the result for polarization by the local field Eloc. This gives an equation of state
that determines the temperature dependence of the spontaneous polarization:

Ps = npe

(

coth
pePs

3kBT ε0
− 3kBT ε0

pePs

)

.

Here, n is the number density of dipoles, pe is the dipole moment, and T is the
temperature. For convenience, we introduce the reduced polarization Ps = Ps/npe
and temperature T = T/Tc with Tc = np2e/9kBε0. In terms of reduced variables, the
equation of state reads

Ps = coth
3Ps

T − T
3Ps

.

Close to the phase transitionwehavePs 
 1.ByTaylor-expanding coth(u) ≈ 1/u +
u/3 − u3/45 + . . ., we find that Ps ≈ Ps/T − 3P3

s /5T 3 so that

Ps ≈
√
5

3
T 2 (1 − T ) .
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The ferroelectric–paraelectric transition occurs at T = 1; above this temperature the
spontaneous polarization vanishes. One can notice that the model predicts the same
critical exponent of the order parameter as the Landau theory of phase transitions.

The mean-field approximation can be applied at an arbitrary temperature. At low
temperatures, we can replace coth (3Ps/T ) by 1 which gives

Ps ≈ 1 − T
3

− T 2

9
.

As shown by Fig. 9.3, both approximations agree well with the exact solution Ps(T )

in their respective regimes of applicability.

0 0.2 0.6 1.00.4
T

0.6

0.2

0.4

0.8

1

1.20.8
0

Ps

Fig. 9.3 Spontaneous polarization of a ferroelectric predicted by mean-field approximation (solid
line) vs. reduced temperature. Also plotted are the approximations valid at low temperatures and
close to the ferroelectric–paraelectric transition (dashed lines).At low temperatures,Ps is an approx-
imately linear function of T , whereas close to the transition we observe a critical behavior charac-
terized by the classical exponent β = 1/2

Problem 9.5.
Analyze the temperature dependence of electric susceptibility of a ferroelectric mate-
rial in the mean-field approximation discussed in Problem 9.4!

In an external electric field of strength E , a ferroelectric material is character-
ized by both spontaneous and induced polarization. The reduced form of the thus
generalized equation of state (Problem 9.4) reads

P = coth
3 (P + E)

T − T
3 (P + E)

,

where
P = Ps(T ) + Pi

is the sum of reduced spontaneous and induced polarization and E = 3ε0E/npe is
the reduced strength of the external electric field. In case where Pi 
 1 we obtain a
linear relation between Pi and E ; the reduced susceptibility is then given by
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Fig. 9.4 Reduced electric susceptibility of a ferroelectric material in mean-field approximation
(solid line) and the approximate temperature dependences of the susceptibility in the ferroelec-
tric phase (dashed lines). The predicted critical behavior agrees with the Landau theory of phase
transitions

Pi

E = 9P2
s

[
1 − coth2 (3Ps/T )

]+ T 2

3T P2
s − 9P2

s

[
1 − coth2 (3Ps/T )

]− T 2
.

Now we insert the approximate analytical expressions for Ps(T ) obtained in Prob-
lem 9.4. In the ferroelectric phase at T → 0 we obtain Pi ≈ T E/3 so that to lowest
order

χ ≈ 9ε0kBT

np2e
,

whereas just below the transition from the ferroelectric to the paraelectric phase
Pi ≈ E/2 (1 − T ) and so

χ ≈ np2e
6ε0kB(Tc − T )

.

In the paraelectric phase we have Pi ≈ E/ (T − 1) for all T > 1 which gives

χ ≈ np2e
3ε0kB(T − Tc)

.

In contrast with the expressions for the susceptibility of the ferroelectric phase which
are approximate (although in good agreement with the numerical solution shown in
Fig. 9.4), this result is exact since the spontaneous polarization of the paraelectric is
equal to 0.

Problem 9.6.
Using the mean-field approximation, discuss the temperature dependence of the dif-
ference of heat capacities of the ferroelectric and paraelectric phase! Calculate the
critical exponent α!
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The average energy of a ferroelectric material is 〈E〉 = −VPs · Eloc/2, where V
is the volume, Ps is the spontaneous polarization, and Eloc is the strength of the local
electric field; the factor of 1/2 originates from the pairwise nature of the dipole–
dipole interactions. In the mean-field approximation, Eloc = Ps/3ε0. We introduce
the reduced spontaneous polarization Ps = Ps/npe, where n is the number density
of the molecules, and we obtain

〈E〉 = −n2 p2e V

6ε0
P2
s .

The heat capacities of the ferroelectric and the paraelectric phase differ by �c =
(1/m)d〈E〉/dT , and at low temperatures we have

�c

c0
≈ 2

3

(

1 + T
3

)

,

where c0 = 3nkB/2ρ; ρ is the density. On the other hand, close to the ferroelectric–
paraelectric transition

�c

c0
≈ 5

3
T (3T − 2) .

As seen in Fig. 9.5, the low-temperature approximation closely approaches the exact
difference of heat capacities. On the other hand, just below the phase transition
the agreement is not so good due to all of the simplifications, despite the correct
magnitude of the jump at the transition. Note that�c is proportional to the derivative
of the polarization which is not captured well by the approximate expressions used
close to the transition.

Fig. 9.5 Reduced difference of heat capacities of the ferroelectric and the paraelectric phase in the
mean-field approximation; here the agreement of approximate solutions (dashed lines) and the exact
solution (solid line) is worse than in the spontaneous polarization and susceptibility. The critical
exponent α is equal to 0: At the transition, �c exhibits a jump but does not diverge
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Problem 9.7.
How does the polarization at the ferroelectric–paraelectric transition depend on the
strength of the external electric field within the mean-field approximation?

Like in Problem 9.5, the equilibrium value of electric polarization is determined
by the equation P = coth

(
3(P + E)/T

)− T /3 (P + E). We expand the right-hand
side for smallP + E and we take into account that at the transition T = 1. This gives

E − 3

5
(P + E)3 = 0

and thus

P =
(
5E
3

)1/3

− E ≈
(
5E
3

)1/3

.

In the final step, we neglected the E term because it is subdominant for E → 0. The
corresponding critical exponent δ is hence equal to 3, again in agreement with the
Landau theory.

Problem 9.8.
Two freely rotating electric dipoles are fixed at a separation of a = 20 nm. The
dipole directions are determined by the unit vectors p1 and p2. The dipole–dipole
interaction energy is given by

φ(p1,p2, a) = γ

a3

[

p1 · p2 − 3

a2
(p1 · a)(p2 · a)

]

,

where a is a unit vector pointing from one suspension point to the other and γ =
6 × 10−46 Jm3. Calculate the average dipole–dipole interaction energy at 300 K
where γ/a3kBT 
 1! What is the force between the dipoles? How do the average
energy and the force depend on the separation a?

The orientation of each dipole is parametrized by the polar angle θi mea-
sured with respect to a = a(0, 0, 1) and by the azimuthal angle φi (i = 1, 2):
pi = (sin θi cosφi , sin θi sin φi , cos θi ). The partition function reads

exp(−βF) ∝
∫ 2π

0
dφ1

∫ π

0
sin θ1 dθ1

×
∫ 2π

0
dφ2

∫ π

0
exp

(−βφ(p1,p2, a)
)
sin θ2 dθ2 ,

where

βφ(p1,p2, a) = βγ

a3

[
sin θ1 sin θ2 cos(φ1 − φ2) − 2 cos θ1 cos θ2

]
.

In the high-temperature limit where βγ/a3 
 1, the exponential function in the
partition function should be expanded up to second order since the linear term van-



9 Equation of State 143

ishes upon integration. Once all integrals are calculated one obtains exp(−βF) ∝
(4π)2

(
1 + β2γ2/3a6

)
:With the given data and to the lowest order, the average energy

of the dipole interaction is

〈Ed〉 =
(

∂βF

∂β

)

a

≈ − 2γ2

3kBTa6
= −5.6 × 10−6 eV .

On average, the dipole–dipole interaction is attractive and decreases rapidly with
distance: 〈Ed〉 ∝ a−6. The magnitude of the interaction decreases with increasing
temperature. It is largest at low temperatures where the dipoles are mostly parallel to
each other, but as the temperature is increased the orientation of the dipoles is more
and more uncorrelated which leads to a weakening of the interaction. The force
between the dipoles is

F = −
(

∂F

∂a

)

β

≈ − 2γ2

kBTa7
= −1.36 × 10−16 N

and decreases with distance as F ∝ 1/a7.

Problem 9.9.
Assume that a uniform electric field gradient can be established between two parallel
plates 1 m apart so that the electric field strength is 0 V/m at the first plate and 2 ×
107 V/m at the second one. The gap between the plates is filled with water vapor at a
low density. Calculate the relative difference of the vapor densities next to the plates
at 400 K! The electric dipole moment of the water molecule is 6.1 × 10−30 Asm.
Where is the center-of-mass plane of vapor and what is its average polarization?
The number density of water molecules per unit plate area is 1.8 × 1025/m2.

In an inhomogeneous electric field, an electric dipole (representing a water
molecule) is drawn in the direction of increasing field strength if it is parallel to the
field and in the opposite direction if it is antiparallel to the field, which causes a re-
positioningofmoleculeswithin the gap.Wedenote the coordinate normal to the plates
by z such that z = 0 and z = d correspond to the first and the second plate, respec-
tively. Let θ denote the polar angle between the electric dipole moment pe and the z
axis, and |dEz/dz| be the magnitude of the field gradient. In the parallel-plate geom-
etry, a force of magnitudeF = pe cos θ |dEz/dz| acts on a dipole along the z axis. If
we use the plate at z = 0 as a reference, the corresponding orientational-positional
term in theHamiltonian is given by E(z, θ) = − ∫ z

0 Fdz = −pe|dEz/dz|z cos θ. The
resulting canonical probability density reads ρ(z, θ) = C exp (β pe|dEz/dz|z cos θ),
where C is a constant. As far as the mass redistribution is concerned, one needs to
consider the density of molecules as a function of z, and molecular orientation is
irrelevant. Thus we project ρ(z, θ) onto the z-coordinate:

ρ(z) =
∫

�

ρ(z, θ) dφ d(cos θ) = 4πC
sinh (αz)

αz
,
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where α = β pe|dEz/dz|. Given that αd ≈ 0.022 
 1, one can expand sinh x ≈
x + x3/6. Then, the relative difference of vapor densities next to the plates is [ρ(d) −
ρ(0)]/ρ(0) ≈ α2d2/6 = 8.1 × 10−5. The center-of-mass plane is located at

z∗ = 〈z〉 =
∫ d
0 zρ(z)dz
∫ d
0 ρ(z)dz

≈ d

2

[

1 + (αd)2

36

]

,

which is only slightly displaced from the mid-plane (i.e., the zero-gradient position);
the shift amounts to 6.8 μm. The average polarization is proportional to

〈cos θ〉 =
∫ d
0 dz

∫ 1
−1 d(cos θ)ρ(z, θ) cos θ

∫ d
0 dz

∫ 1
−1 d(cos θ)ρ(z, θ)

≈ αd

6

[

1 − (αd)2

180

]

,

where the integration over θ was performed by parts and the resulting hyper-
bolic functions were expanded up to third order. We define the polarization by
P = (N/Ad)pe〈cos θ〉, where A is the surface area of either plate, and obtain
P ≈ 4 × 10−7 As/m2.

Problem 9.10.
A keratin molecule (found in, e.g., wool fibers) can be represented by a chain of
identical elongated segments. Consider a simple model where the segments can be
oriented either along the chain or perpendicular to it and are assumed to be indepen-
dent. The contribution of each segment to the chain energy depends on its orientation
with respect to the chain. Calculate the average length, energy, and enthalpy of a
chain subjected to a stretching force, and estimate the length fluctuations!

Wedenote the length and thewidth of a segment by a and d, respectively (Fig. 9.6).
The energies of a lengthwise and a transverse segment are Ea and Ed , respectively.We
consider a keratin chain containing a total of N segments, with Na in the lengthwise

Fig. 9.6 Model of a keratin molecule where only lengthwise and transverse orientations of the
segments with respect to the chain are allowed; the molecule is stretched by a force F

orientation and Nd = N − Na in the transverse orientation. The phase space consists
of all possible arrangements of lengthwise and transverse segments. Note that in this
system an intensive quantity (the force F) rather than an extensive one (length �) is
fixed. As a consequence, the probability density is a function of enthalpy H = E −
F� rather than of the energy E alone: ρ(H) ∝ exp (−βH). (This is also discussed
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in Problem 8.5, where we examine an ideal gas at constant pressure rather than at
constant volume.) In a stretched molecule, the more probable configurations include
those with a low energy as well as those with the lengthwise orientation of the
segments. Both length and energy of a given configuration depend on the number of
transverse segments: �(Na) = aNa + d(N − Na) and E(Na) = EaNa + Ed(N −
Na). We now write the partition function (here represented by a sum rather than by
an integral)

exp (−βG) =
N∑

Na=0

C(N , Na) exp
(−β

[
E(Na) − F�(Na)

])
,

where G is the Gibbs free energy;

C(N , Na) = N !
Na !(N − Na)! =

(
N

Na

)

denotes the number of different configurations with Na lengthwise segments and
N − Na transverse segments (Fig. 9.7). Thus the partition function can be recast as

C(3,0) = 1

C(3,1) = 3

C(3,2) = 3

C(3,3) = 1

Fig. 9.7 Possible configurations of a three-segment keratin molecule, with
∑3

i=0 C(3, i) = 1 +
3 + 3 + 1 = 23 possible arrangements

exp(−βG) =
N∑

Na=0

(
N

Na

)
[
exp

(−β(Ea − Fa)
)]Na

× [exp (−β(Ed − Fd)
)]N−Na

,

and after applying the binomial theorem one obtains

exp(−βG) = [
exp

(−β(Ea − Fa)
)+ exp

(−β(Ed − Fd)
)]N

.

We see that the N -segment partition function has split into a product of partition
functions for individual segments. This is expected because we assume that the
segments are independent from each other. (An analogous result also follows if there
exist more than two possible states of the segments.)
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The average length of a keratin molecule is 〈� 〉 = − (∂βG/∂βF)β or

〈� 〉 = N
a exp

(−β(Ea − Fa)
)+ d exp

(−β(Ed − Fd)
)

exp
(−β(Ea − Fa)

)+ exp
(−β(Ed − Fd)

)

= a〈Na〉 + d〈Nd〉 ,

where 〈Na〉 and 〈Nd〉 are the average numbers of lengthwise and transverse segments,
respectively. If the applied force is weak (βFa 
 1 and βFd 
 1), we have

〈� 〉 = N

{
d + a exp�

1 + exp�
+ βF

[
d2 + a2 exp�

1 + exp�
−
(
d + a exp�

1 + exp�

)2
]}

,

where � = β(Ed − Ea). The first term in the curly bracket represents the average
length of an unloaded molecule, whereas the second term is a correction due to the
external force. The correction is a linear function of the force and is thus consistent
with Hooke’s law. If the applied force is large so that Fa � Ea and Fd � Ed , then

〈� 〉 = N
d + a exp

(
βF(a − d)

)

1 + exp
(
βF(a − d)

) ≈ Na .

In this regime the molecule is fully stretched. (Here we assume that a > d.)
The amplitude of length fluctuations is described by

σ2
� = 〈�2〉 − 〈� 〉2 = −

(
∂2βG

∂(βF)2

)

β

=
(

∂〈� 〉
∂βF

)

β

= N (a − d)2
exp

(−β
[
Ea + Ed − F(a + d)

])

[
exp

(−β(Ea − Fa)
)+ exp

(−β(Ed − Fd)
)]2 .

We see that σ2
� is proportional to the difference (a − d)2: If the length and the width

of the segments are the same, the length of the molecule does not fluctuate.
The average energy and enthalpy are given by

〈E〉 =
(

∂βG

∂β

)

βF
= Ea〈Na〉 + Ed〈Nd〉

and

〈H〉 =
(

∂βG

∂β

)

F
= (Ea − Fa)〈Na〉 + (Ed − Fd)〈Nd〉 ,

respectively.

Problem 9.11.
A polymer chain consists of 20 elongated monomers of length of 2 nm and width of
1 nm, eachwith an embedded longitudinal electric dipolemoment of 10−28 Asm. If a
monomer is parallel to the chain, its energy is 0.08 eV,whereas if it is perpendicular
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to the chain, its energy is 0.1 eV.Calculate the average chain lengthat 20 ◦C!Byhow
much does the chain length change after an electric field of strength of 5 × 107 V/m
is applied along the chain? Assume that the monomers’ long axes lie in the same
plane and that the dipoles are independent!

The phase space of each monomer consists of four states because in both the
lengthwise and the transverse orientation the dipole may point in two directions. Let
us denote the two transverse states by A and B and the two lengthwise ones by C
and D. In state C the dipole points along the electric field E, whereas in state D it
points in the opposite direction (Fig. 9.8). The bonding energy of states A and B is

E

A B C D

Fig. 9.8 Possible bonding arrangements of polar monomers in a polymer chain. The four possible
states are denoted by A, B,C , and D. The white arrow indicates the orientation of the electric dipole

EA = 0.1 eV and that of states C and D is EC = 0.08 eV. The width and length
of the segment are denoted by a and c, respectively. The partition function for a
N -segment chain then reads

exp(−βG) = [
2 exp (−βEA) + exp

(−β(EC − peE)
)

+ exp
(−β(EC + peE)

)]N
,

where we have assumed that the chain segments are independent (Problem 9.10) and
we used pe to denote the dipole moment of the segments. The average chain length
is equal to

〈� 〉 = a
(〈NA〉 + 〈NB〉)+ c

(〈NC 〉 + 〈ND〉) ,

where 〈Ni 〉 (i = A, B,C, D) stands for the average number of segments in a given
state. After introducing � = EC − EA and z = 2

[
1 + exp (−β�) cosh β peE

]
, we

have

〈NA〉 = N exp(βG1) exp (−βEA) = Nz−1,

〈NB〉 = 〈NA〉 ,

〈NC 〉 = N exp(βG1) exp
(−β(EC − peE)

)

= Nz−1 exp
(−β(� − peE)

)
,

〈ND〉 = N exp(βG1) exp
(−β(EC + peE)

)

= Nz−1 exp
(−β(� + peE)

)
,
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where exp(−βG1) = exp(−βG/N ) is the partition function for a single segment.
In absence of the electric field the energy of the states C and D is degenerate and
thus 〈NC 〉 = 〈ND〉. In this case the average length of a 20-segment chain equals
〈� 〉 = 33.8 nm. The electric field breaks the symmetry of the statesC and D as more
dipoles align parallel to the field than in the opposite direction. A field of strength of
5 × 107 V/m leads to a chain elongation of 2.3 nm.

Problem 9.12.
A macromolecule can be modeled by a freely jointed polymer chain consisting of
1 nm-long rigid segments. Calculate the linear thermal expansion coefficient and
the isothermal Young’s modulus of such a chain at 300 K subjected to a stretching
force of 1 pN! Examine the limits of weak and strong force!

We denote the number of segments by N and segment length by a. The orientation
of each segment with respect to the chain end-to-end vector is given by the polar
angle θi , where i = 1, . . . N . The corresponding azimuthal angles are irrelevant as
the chain length � = ∑N

i=1 a cos θi does not depend on them. Like in Problem 9.10
the Boltzmann factor features the enthalpy −F�, where F is the stretching force.
(As the chain is freely jointed, the conformational energy is zero.) We obtain

〈� 〉 = Na〈cos θi 〉 = Na

∫ π

0 cos θi exp (βFa cos θi )2π sin θi dθi∫ π

0 exp (βFa cos θi )2π sin θi dθi

= Na

(

coth βFa − 1

βFa

)

.

This result formally coincides with the expression for the polarization of an ideal
gas consisting of electric dipoles (Problem 9.1). In the weak-force regime where
βFa 
 1, we obtain Hooke’s law 〈� 〉 ≈ Na2F/3kBT , whereas in the strong-force
regimewhereβFa � 1we have 〈� 〉 ≈ Na. The linear thermal expansion coefficient
is equal to

α = 1

〈� 〉
(

∂〈� 〉
∂T

)

F
= − 1

T

(βFa)−1 − βFa sinh−2 (βFa)

coth (βFa) − (βFa)−1

= −0.0033 K−1

and is negative. The reciprocal isothermal Young’s modulus reads

E−1
T = 1

〈� 〉
(

∂〈� 〉
∂F

)

T

= βa
(βFa)−2 − sinh−2 (βFa)

coth (βFa) − (βFa)−1

= 9.9 × 1011 N−1 .

Consequently, ET = 1.01 pN. In the weak-force regime where Hooke’s law is valid,
we obtain α ≈ −1/T and ET ≈ F (Fig. 9.9). On the other hand, if the force is very
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Fig. 9.9 Isothermal Young’s modulus of a freely jointed polymer (solid line), with Hooke’s law
ET = F observed in the weak-force regime (dashed line)

strong (βFa → ∞) the macromolecule is fully stretched: In this regime one has
α → 0, whereas ET diverges. We notice that α is negative, i.e., the macromolecule
contracts upon heating. This can be understood by recalling that in the freely jointed
polymers, the origin of elasticity is entirely entropic. Upon heating, the average
orientational order of the chain stretched by a given force is decreased and the coil
becomes more spherical. Thus the chain end-to-end distance decreases too.

Problem 9.13.
Starting from a given pair potential φ(r), derive the equation of state for a nonideal
monatomic gas at intermediate densities! Consider only pair interactions between
the atoms and neglect clusters of more than two atoms.

In order to derive the equation of state for a gas, p = −(∂F/∂V )β , we begin with
the Helmholtz free energy obtained by taking the logarithm of the partition function.
The energy of a N -atom ensemble consists of the kinetic and the interaction term:

E =
N∑

i=1

p2i
2m

+
∑

i< j

φ(ri j ) .

Here m is the mass of a single atom, pi is the magnitude of the linear momentum
of the atom i , and φ(ri j ) is the interaction energy of atoms i and j separated by a
distance ri j . The partition function reads

exp(−βF) ∝
∫
exp

(

−β

N∑

i=1

p2i
2m

)
N∏

i=1

dpi

∫
exp

(

−β
∑

i< j

φ(ri j )

) N∏

i=1

dri

︸ ︷︷ ︸
Z(T,V )

.
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The integrals over the linear momenta are independent of volume and hence do
not contribute to pressure. The remaining part of the partition function, which does
depend on the positions of the atoms (and thus on volume) and is referred to as the
configuration integral, is denoted by Z(T, V )

Z(T, V ) =
∫

V
exp

(

−β

N∑

j=2

φ(r1 j )

)

dr1

∫

V
exp

(

−β

N∑

j=3

φ(r2 j )

)

dr2 ×

· · · ×
∫

V
exp

(−βφ(rN−1 N )
)
drN−1

∫

V
drN .

Each of the factors in the integrand can be recast as exp
(−βφ(ri j )

) = 1 −[
1 − exp

(−βφ(ri j )
)]
. This form is convenient because the pair potential φ(r)

decreases rapidly with distance, and thus the expression in the square brackets which
depends on the pair potential is nonzero only if the distance between atoms i and j
is small enough. When integrating, for example, over the position of the first atom
(r1), the expression in square brackets differs from 0 only in the vicinity of each
of the remaining N − 1 atoms. Since all atoms are identical, the contributions of
each of these regions to the part of the configuration integral in question denoted by
Z1(T, V ) are identical too (Fig. 9.10). At intermediate densities, the contributions of
clusters containing more than two atoms can be neglected; in this case, the integral
over r1 gives

Z1(T, V ) =
∫

V

⎧
⎨

⎩
1 −

⎡

⎣1 − exp

(

−β

N∑

j=2

φ(r1 j )

)
⎤

⎦

⎫
⎬

⎭
dr1

= V − 2B2(N − 1) ,

where

B2 = 1

2

∫ ∞

0

[
1 − exp

(−βφ(r)
)]
4πr2 dr

is the second virial coefficient. Due to the rapid decrease of interaction with distance,
the upper bound of the integral can be replaced by infinity. In a similar manner, we
integrate over the remaining coordinates ri to find that Zi (T, V ) = V − 2B2(N − i)
so that in the configuration integral, the interaction between each pair of atoms
appears only once as it should. Thus

Z(T, V ) =
N∏

i=1

Zi (T, V ) = V N
N∏

i=1

[

1 − 2B2(N − i)

V

]

.

Upon taking the logarithm of the configuration integral one obtains
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r2

r1
r3r4

r5

r6

Fig. 9.10 Virial equation of state:When integrating over the position of the first atomdenoted by r1,
all other atoms are fixed in space (plotted here is the N = 6 case). The integrand 1 − exp [−βφ(r1 j )]
is finite only within the white regions where the first atom is close to any of the other atoms whereas
in the gray region it vanishes. At small enough densities, the white regions do not overlap and only
two-atom clusters need to be considered. After the integral over r1 is evaluated, the circle belonging
to the second atom is removed and we integrate over r2, etc. until the integrals over the positions
of all atoms are carried out

ln Z(T, V ) = N ln V +
N−1∑

i=1

ln

(

1 − 2B2(N − i)

V

)

≈ N ln V −
N−1∑

i=1

2B2(N − i)

V

= N ln V − B2N (N − 1)

V
,

where we assumed that 2B2(N − i)/V 
 1 and recognized the arithmetic series.
Since the number of atoms is large, we can replace N (N − 1) by N 2 to arrive at the
virial equation of state

p = 1

β

(
∂ ln Z(T, V )

∂V

)

β

≈ NkBT

V

(

1 + N B2

V

)

.

The relative correction to the ideal gas equation of state N B2/V is proportional to
the density, and is small if the density is small too because the magnitude of the
second virial coefficient is determined by the range of the pair potential which is
usually much less than the average distance between the atoms (V/N )1/3.

A more general virial expansion of the equation of state reads

p = NkBT

V

⎡

⎣1 +
∞∑

j=2

Bj (T )

(
N

V

) j−1
⎤

⎦ .
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The second virial coefficient reflects the interaction between pairs of atoms, whereas
the higher terms correspond to triplets, quadruplets, etc. and cannot be evaluated
analytically except in a few special cases. Alternatively, dense fluids and many other
strongly correlated systems can be studied using computer simulations (AppendixB).

Problem 9.14.
Derive the equation of state for a nonideal gas consisting of hard spheres of diameter
σ with an attractive interaction

φ(r) =
{∞, r < σ

−φ0(σ/r)s, r ≥ σ
,

given that s > 3 and assuming that the attractive part of the potential is shallow so
that βφ0 
 1! What is the internal energy of such a gas?

For the given potential (plotted in Fig. 9.11) and βφ0 
 1 we have

1 − exp
(
−βφ(r)

)
≈
{
1, r < σ
−βφ0(σ/r)s, r ≥ σ

.

The second virial coefficient is equal to

Fig. 9.11 Interatomic potential in a nonideal gas:Hard-sphere repulsion (solid line) and hard-sphere
repulsion combined with the van der Waals attraction (s = 6, dashed line)

B2 = 1

2

[∫ σ

0
4πr2 dr −

∫ ∞

σ

βφ0

(σ

r

)s
4πr2 dr

]

= 4V0 − βα .

The second integral converges only if s > 3; in the last step, we introduced V0 =
πσ3/6 and α = 12V0φ0/(s − 3). For φ0 �= 0, B2 depends on temperature. The virial
equation of state now reads

pV = NkBT

[

1 + N

V
(4V0 − βα)

]

,
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and can be recast as

(

p + N 2

V 2
α

)

(V − 4NV0) = NkBT .

It is instructive to compare this result with the van der Waals equation of state
(p + a/V 2)(V − b) = NkBT : We notice that the coefficient a = N 2α originates
from attractive interparticle forces, whereas the coefficient b = 4NV0 is the signature
of hard-core repulsion.

The internal energy of a nonideal gas consists of a kinetic term which is the same
as in the ideal gas and of an interaction term

Ui = −
(

∂ ln Z(T, V )

∂β

)

V

= N 2

V

dB2

dβ
= −N 2α

V
;

the configuration integral Z(T, V ) is defined in Problem 9.13. The internal energy
of a monatomic nonideal gas is given by

U (T, V ) = 3NkBT

2
− N 2α

V

and does not depend only on temperature like in an ideal gas but also on volume.
In case of an attractive long-range interaction one has α > 0 and at a given T , U
is smaller than in an ideal gas, whereas otherwise α < 0 and U is larger than in an
ideal gas.

Problem 9.15.
A monatomic gas, initially at a pressure of 5 bar and a temperature of 27 ◦C, flows
through a thermally insulated valve into a chamber where the pressure is 1 bar.
Calculate the change of temperature in this process! The interaction between the
atoms is given by

φ(r) =
⎧
⎨

⎩

∞, r < σ
−φ0, σ ≤ r < 2σ
0, r ≥ 2σ

,

with σ = 0.2 nm and φ0 = 10−3 eV. For what values of the φ0 does the temperature
of the gas increase?

The gas undergoes the Joule–Kelvin process. The change of temperature can be
calculated using the Joule–Kelvin coefficient (∂T/∂ p)H = (

β′T− 1
)
/ρcp, where

β′ is the volumetric thermal expansion coefficient. For the given interatomic
potential and βφ0 
 1 we have

B2 = 1

2

(∫ σ

0
4πr2 dr − βφ0

∫ 2σ

σ

4πr2 dr

)

= 4V0(1 − 7βφ0) ,
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where V0 = πσ3/6. Now we construct the virial equation of state, calculate the
thermal expansion coefficient, and finally obtain

(
∂T

∂ p

)

H

= 8V0

5kB

(
14φ0

kBT
− 1

)

= −2.23 × 10−7 K/Pa ,

so that the temperature increases by 0.09 K; here we took into account that cp =
5R/2M and retained only the lowest-order terms.

The Joule–Kelvin coefficient changes sign at 14φ0 − kBT = 0; hence the tem-
perature of the gas is increased for φ0 < kBT/14 = 1.85 × 10−3 eV. A sudden drop
of pressure leads to an increase of temperature only if the attractive tail of the inter-
atomic potential is shallow enough for the repulsive forces to prevail in the system.

Problem 9.16.
A thermally insulated evacuated vessel contains an ampoule of a volume of 0.1 dm3

filled by 10−5 kmol of gas characterized by intermolecular interaction considered
in Problem 9.15. The initial temperature of the gas is 27 ◦C. What should be the
volume of the container if the temperature of the gas is to decrease by 0.02 ◦C after
the ampoule breaks?

Since the container is both evacuated and thermally insulated, the internal energy
of the gas is conserved after the ampoule is broken; this is an instance of the so-
called Hirn experiment. As the gas involved is nonideal, its internal energy depends
on volume and is equal to (see Problem 9.14)

U (T, V ) = 3N

2β
+ N 2

V

dB2

dβ
= 3NkBT

2
− 28N 2V0φ0

V
.

Here we inserted B2 calculated in Problem 9.15. FinallyU (V, T ) = U (V ′, T ′) (here
V ′ is the volume of the ampoule, T ′ is the initial temperature of the gas, V is the
volume of the container, and T is the final temperature) gives

V =
[
1

V ′ − 3kB(T ′ − T )

56NV0φ0

]−1

= 0.158 dm3 .

Problem 9.17.
The pair interaction between the atoms in a nonideal gas is described by a hard-
sphere/square-well potential

φ(r) =
⎧
⎨

⎩

∞, r ≤ σ
−φ0, σ < r ≤ 2σ
0, r > 2σ

,

where σ = 0.1 nm and φ0 = 5 meV. For not too dense a gas, derive the van der
Waals form of the equation of state and express its parameters in terms of φ0 and
σ, assuming that φ0 
 kBT ! Estimate the critical parameters of the gas (pressure,
temperature, and kilomolar volume)!
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We first calculate the second virial coefficient. By taking into account that φ0 

kBT one has

B2 = 2πσ3

3

(
1 − 7βφ0

)
.

Given that the density of the gas N/V is not too high, i.e., Nσ3/V 
 1, the virial
equation of state can be rearranged into

(

p + 14π

3

N 2φ0σ
3

V 2

)(

1 − 2π

3

Nσ3

V

)

= NkBT

V
.

Nowwe express V in terms of kilomolar volume VM = V NA/N andwe compare the
obtained equation of state with the van derWaals form to find that the two parameters
describing the nonideality of the gas read

a = 14π

3
N 2

Aφ0σ
3 and b = 2π

3
σ3NA .

By using the results of Problem 1.1 and by recalling that R = kBNA, we find that the
critical pressure, temperature, andkilomolar volumeare pc = 7φ0/18πσ3 = 990bar,
Tc = 56φ0/27kB = 120 K, and VMc = 2πσ3NA = 3.8 dm3/kmol, respectively.

Problem 9.18.
Explore the temperature dependence of heat capacity in a rarefied gas of particles
characterized by the square-shoulder repulsive pair interaction

φ(r) =
⎧
⎨

⎩

∞, r < σ1

φ0, σ1 ≤ r < σ2

0, r ≥ σ2

,

where σ2 > σ1 and φ0 > 0! At what temperature does it reach a maximum?

Since the gas is rarefied, the deviation of the heat capacity from the classical
monatomic gas value can be described by the virial expansion (see Problem 9.13).
The partition function reads

exp(−βF) ∝
(
2πm

β

)3N/2

V N

(

1 − N 2B2

V

)

,

where

B2 = 2π

3

{
σ3
1 + [

1 − exp(−βφ0)
] (

σ3
2 − σ3

1

)}
.

The internal energy of the gas is given by

U =
(

∂βF

∂β

)

V

= N

[
3kBT

2
+ 2πN

3V

(
σ3
2 − σ3

1

)
φ0 exp

(

− φ0

kBT

)]

,
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so that

CV = NkB

[
3

2
+ 2πN

3V

(
σ3
2 − σ3

1

)
(

φ0

kBT

)2

exp

(

− φ0

kBT

)]

.

The second term in the brackets represents the correction of the classical ideal gas
value: It is proportional to the density and drops to zero at both very low and at very
high temperature and exhibits amaximumat T = φ0/2kB in between (Fig. 9.12). The
limits are easily understandable given that at low and high temperature the particles
behave as hard spheres of diameter σ2 and σ1, respectively. As the heat capacity is
unaffected by the proper volume of the particles, it is the same at both low and high
temperature.

Fig. 9.12 Heat capacity of a rarefied gas consisting of hard particleswith an additional shoulder-like
repulsive interaction features a maximum in between the low- and high-temperature limits where
CV is equal to 3NkB/2. To emphasize the maximum, CV is plotted at a relatively high density
where (2πN/3V )

(
σ3
2 − σ3

1

) = 0.5, where a more complete virial expansion is needed instead of
the lowest-order approximation used here

Problem 9.19.
Derive the equation of state for a one-dimensional gas consisting of particles inter-
acting only with nearest neighbors! Consider a bare hard-sphere potential as well as
a hard-sphere potential combined with a square-well attraction of finite depth and
width!

This model is known as the Tonks gas. In one dimension, the particles cannot
jump past each other so that x1 < x2 < . . . < xN , where xi is the position of the i th
particle and the particles are numbered consecutively from 1 to N . For simplicity,
we use periodic boundary conditions so that the N th particle with xN = L reappears
as the left neighbor of the first particle and formally x0 = 0; here L is the length (i.e.,
one-dimensional volume).

At constant L , the partition function is given by

exp
(−βF(T, L)

) ∝
∫

exp
(−βφ(x1)

)
exp
(−βφ(x2 − x1)

)× · · ·
· · · × exp

(−βφ(L − xN−1)
)
dx1dx2 · · · dxN−1 ,
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where the integrals are over all x j with 1 ≤ j ≤ N − 1 so that 0 < x1 < x2 < · · · <

L . The partition function is to be evaluated only for configurations of particles
arranged in sequential order so that x1 < x2 < · · · < xN , which is nontrivial. These
technical difficulties can be bypassed by resorting to theLegendre transform to switch
from the isochoric to the isobaric ensemble where pressure rather than volume is kept
constant. The isobaric partition function reads

exp
(−βG(T, p)

) ∝
∫ ∞

0
exp
(−β [F(T, L) + pL]

)
dL

=
∫

exp
(−βφ(y1)

)
exp
(−βφ(y2)

) · · · exp(−βφ(yN )
)

× exp

⎛

⎝−β p
N∑

j=1

y j

⎞

⎠ dy1dy2 · · · dyN ,

where

y1 = x1 ,

y1< j<N = x j − x j−1 ,

yN = L − xN−1

are the relative particle coordinates with 0 < y j < ∞; we took into account that
L = ∑N

j=1 y j . Nowwe notice that the integrand actually consists of identical factors,
yielding

exp(−βG) ∝
[∫ ∞

0
exp
(−β [φ(y) + py]

)
dy

]N
.

The equation of state can now be derived from the total differential dG = −S dT +
L dp whereby L = (∂G/∂ p)T . We first calculate L(p) for the hard-sphere interac-

tionwith the sphere diameter equal toσ1.Weobtain exp(−βG) ∝
[∫∞

σ1
exp(−β py) dy

]N

= [
exp(−β pσ1)/β p

]N , which gives G = Npσ1 + N ln(β p)/β and

� = L

N
= σ1 + kBT

p

or p = kBT/(� − σ1), which is reminiscent of the van derWaals equation of state for
hard particles (see, e.g., Problem 9.17 for φ0 = 0). There is, however, an important
difference: The van der Waals equation for a three-dimensional gas is derived using
the (truncated) virial expansion and is thus valid only at low densities, whereas the
above result is exact and holds at an arbitrary density.

We now consider a pair potential that includes a hard-sphere repulsion of range
σ1 and an attractive square-well tail of depth −φ0 < 0 and range σ2. Then we have
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Fig. 9.13 Isotherms of a one-dimensional gas consisting of hard-sphere/square-well particles of
hard-core and well diameters σ1 and σ2 = 2σ1, respectively, and well depth −φ0; the reduced
temperature is kBT/φ0 = 0.2 (a). Also plotted are the isotherms of a gas of hard-sphere particles
of diameter σ1 where p = kBT/(� − σ1) (b), and of a gas of hard-sphere/square-shoulder particles
of shoulder height φ0 and diameter σ2 = 2σ1 (c). In all three cases, the pressure is a monotonic
function of �. In this respect, the isotherms are qualitatively the same at all temperatures, and thus
there is no liquid-to-gas phase transition

� = σ1 − σ2 exp
(−p(σ2 − σ1)/kBT

) [
1 − exp(−φ0/kBT )

]

1 − exp
(−p(σ2 − σ1)/kBT

) [
1 − exp(−φ0/kBT )

] + kBT

p
.

In this case, the pressure cannot be expressed explicitly as a function of volume or
density. This is actually not a problem as the equation of state can still be analyzed
by plotting �(p) instead. Figure 9.13 shows that the pressure is a monotonically
decreasing function of � at all temperatures. This means that in this one-dimensional
model, there is no liquid–gas phase transition despite the attractive part of the pair
potential. It turns out that no one-dimensional ensemble where particles interact
only with a finite number of nearest neighbors features such a phase transition. This
finding is known as the van Hove theorem.

Problem 9.20.
Derive the relation between the radial distribution function and the interatomic
potential! Calculate the radial distribution function for a gas consisting of particles
with pair potential considered in Problem 9.14!

The probability density ρ(E) is a function of coordinates ri and momenta pi of
the N atoms in the ensemble. The probability density for finding the first atom at r1,
the second atom at r2, …, is obtained by integrating ρ(E) over the subspace spanned
by the momenta

wN (r1, . . . rN ) =
∫

ρ(r1, . . . rN ,p1, . . . pN ) dp1 · · · dpN ,
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thereby projecting the probability density ρ(r1, . . . rN ,p1, . . . pN ) onto the subspace
of spatial coordinates. By further integrating over the positions of atoms 3, 4, . . . N ,
we define the two-particle distribution function:

w2(r1, r2) =
∫

wN (r1, . . . rN ) dr3 · · · drN ,

which gives the probability density for finding atoms 1 and 2 at r1 and r2, respectively.
We insert the normalized wN (r1, . . . rN ) ∝ exp

(−β
∑

i< j φ(ri j )
)
and assume that

the density is low so that we can integrate it like in Problem 9.13 where we calculated
the configuration integral Z(T, V ) but we omit the integrals over r1 and r2. Thus we
find that

w2(r1, r2) =
{∏N

i=3 [V−2B2(i − 1)]
}
exp

(−βφ(r12)
)

∏N
i=1 [V−2B2(i − 1)]

= exp
(−βφ(r12)

)

V (V − 2B2)
.

At low densities one has V � 2B2 and hence

w2(r1, r2) ≈ 1

V 2
exp

(−βφ(r12)
) = 1

V 2
g(r12) ,

where g(r) = exp
(−βφ(r)

)
is the radial distribution function. (No generality is lost

by selecting atoms 1 and 2 out of N identical atoms.)
In an ideal gaswhereφ(r12) = 0 the atoms aremutually independent,w2(r1, r2) =

w1(r1)w1(r2). Here w1(r) is the single-particle distribution function; in a uniform
gas w1(r) = V−1.

It is often convenient to consider the local number density n(r) = Nw1(r) and
describe pair correlations by introducing the two-particle number density

n(r1, r2) = N 2w2(r1, r2) = n2g(r12) ,

where n = N/V stands for the number density of a uniform gas. Thus we see that
g(r12) corresponds to the particle density at a distance r12 from the reference particle
divided by the average density.

In a gas consisting of attractive hard spheres from Problem 9.14 one has

g(r) ≈
{
0, r < σ
exp

(
βφ0(σ/r)s

)
, r ≥ σ

.

The probability that the distance between two particles is smaller than the sphere
diameter σ is equal to 0. On the other hand, the probability of finding the two spheres
at a large separation is a constant because the pair potential vanishes as r → ∞;
thus g(r → ∞) → 1. At intermediate separations one has g(r) � 1 because the
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probability of finding two spheres at a distance r � σ is somewhat higher than for
r → ∞ due to the attractive tail of the pair potential.

Problem 9.21.
Assume that the radial distribution function for gaseous helium be given by

g(r) =
{
0, r < σ
1, r ≥ σ

,

where σ = 0.2 nm. Identify the corresponding interatomic potential, assuming that
the density is not too high! At the level of linear corrections to the ideal gas equation
of state, calculate the bulk thermal expansion coefficient of the gas at a density of
10 kg/m3 and a temperature of 20 ◦C as well as the difference of heat capacities
cp − cV ! Compare the results with those for ideal gas! The kilomolar mass of helium
is 4 kg/kmol.

The relation φ(r) = −kBT ln
(
g(r)

)
(see Problem 9.20) suggests that φ(r) is

the hard-sphere potential, the sphere diameter being σ. The corresponding equation
of state is a special case of the van der Waals equation without the attractive tail
(Problem 9.14; φ0 and hence α both vanish). The bulk thermal expansion coefficient
is then

β′ = 1

V

(
∂V

∂T

)

p

= 1

T

(

1 − 4NV0

V

)

= 3.33 × 10−3 K−1 .

The relative deviation from the ideal gas result is given by 4NV0/V = 4V0NAρ/M =
2.5%; here we used V0 = πσ3/6.

The difference of heat capacities is equal to

cp − cV = β′

ρ

[

p +
(

∂U

∂V

)

T

]

,

whereU stands for the internal energy. For a hard-sphere potential,U contains only
the kinetic term, 3NkBT/2, and is hence independent of volume. Therefore at the
lowest order we are left with

cp − cV = β′ p
ρ

≈ NAkB
M

= R

M
= 2080 J/kgK

just like in an ideal gas.

Problem 9.22.
The pair interaction between dendrimer molecules is given by a soft potential

φ(r) = φ0 exp

(

− r2

σ2

)

,

where φ0 = 5 × 10−4 eV and σ = 5 nm. Calculate the relative deviation of its
isothermal compressibility in the gas at 300 K and a number density of 1024
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molecules per m3 from that in an ideal gas! By how much does the density at a
distance σ from the center of a reference molecule differ from the average density?

Wefirst calculate the second virial coefficient by noting thatβφ0 
 1 and expand-
ing the exponential to first order. This gives

B2 ≈ 1

2

∫ ∞

0
βφ(r)4πr2dr = π3/2βφ0σ

3

2
.

The virial equation of state thus reads

p = N

V
kBT +

(
N

V

)2 π3/2φ0σ
3

2

and is differentiated at a constant temperature to give the isothermal compressibility

χT = − 1

V

(
∂V

∂ p

)

T

= V

NkBT

(

1 − N

V

π3/2φ0σ
3

kBT

)

.

The second term in the brackets corresponds to the relative deviation of χT from
its ideal gas counterpart V/NkBT and is small, amounting to 1.3%; in the above
analysis, we already took this into account.

The ratio of the density at a certain distance r from the reference molecule and
the average density is given by the radial distribution function g(r). In a rarefied gas
one has g(r) = exp

(−βφ(r)
)
(Problem 9.20) and the corresponding difference of

the number density of molecules reads

�n = N

V

[
g(σ) − g(∞)

] ≈ −N

V
βφ0 exp (−1) = −7.1 × 1021 m−3.

Due to the soft repulsive potential, the density in the vicinity of each particle is
decreased relative to that at a large distance.

Problem 9.23.
Derive the radial distribution function of a one-dimensional hard-sphere gas (Tonks
gas)!

In a homogeneous system, the particle density n(r) = 〈∑
i δ(r − ri )

〉
(where the

i runs over all particles and the brackets denote thermodynamic averaging) is depen-
dent of position and equal to n = N/L . (Here we use the same notation as in Prob-
lem 9.19.) The two-particle number density defined by

n(r, r′) =
〈
∑

i

∑

j �=i

δ(r − ri )δ(r′ − r j )

〉

,

can also be written as a product of the probability of finding a particle at r and of the
conditional probability of finding another particle at r′, provided that the first one is
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at r. In terms of number densities,

n(r, r′) = n(r′) n(r|r′) .

In a homogeneous system the two-particle density depends only on the interparticle
distance and like in Problem 9.20 we have

n(r, r′) = n2g(r − r′) ,

where g(r − r′) is the radial distribution function. By putting the second particle in
the origin (r′ = 0), we see that g(r) = n−1n(r|0).

In a one-dimensional system from Problem 9.19, the position of the left-most
(0th) particle is fixed (x0 = 0), whereas for the remaining particles x j>0 > 0. Now
we introduce g+(x) by

ng+(x) = n(x |0) =
〈
∑

j>0

δ(x − x j )

〉

.

In the next step, we symmetrize the system by shifting its right half where x is
between L/2 and L by L to the left; this can be done because we use periodic
boundary conditions. After we do so, we can extend the radial distribution function
to all x by introducing g(x) = g+(x) + g+(−x).

We now calculate g+. According to the above definition, it consists of terms
corresponding to correlations between the 0th and the j th particle:

g+(x) =
N−1∑

j=1

g( j)(x) ,

where ng( j)(x) = 〈δ(x − x j )〉. The Laplace transform of ng( j) is

ng( j)(λ) =
∫ ∞

0
exp(−λx)〈δ(x − x j )〉 dx = 〈exp(−λx j )〉 .

Like in Problem 9.19 the statistical average is calculated by switching from the
isochoric (L = const.) to the isobaric ensemble (p = const.). We introduce the
relative coordinates of the particles y j = x j − x j−1 so that x j = ∑ j

i=1 yi . Then we
have ng( j)(λ) = 〈

exp
(− λ

∑ j
i=1 yi

)〉
and in case of a nearest-neighbor interaction

φ = φ(yi ), the average product of exponentials reduces to a product of averages of
exponentials:

ng( j)(λ) =
j∏

i=1

∫∞
0 exp

(−β [φ(yi ) + pyi ]
)
exp(−λyi ) dyi

∫∞
0 exp

(−β [φ(yi ) + pyi ]
)
dyi

= 〈exp(−λy)〉 j .
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We see that the Laplace transform of the correlation function between the 0th and
j th particle g( j)(λ) is proportional to the j th power of the Laplace transform of the
nearest-neighbor correlation function ng(1)(λ). This means that g( j)(x) is propor-
tional to the convolution of g(1)(x):

g( j)(x) = g(1)(x) ∗ g(1)(x) ∗ · · · ∗ g(1)(x)
︸ ︷︷ ︸

j

n j−1 .

Wenote that the same result can be derivedwithout resorting to the Laplace transform
by recalling that the probability distribution of a sum of two independent random
variables—in this case the nearest-neighbor distances—is equal to a convolution of
the single-variable probability distributions.

Using this apparatus, we readily obtain g(1)(x):

g(1)(x) = 1

n

exp
(−β [φ(x) + px]

)

∫∞
0 exp

(−β [φ(y) + py]
)
dy

.

In our case, φ(x) is the hard-sphere interaction, i.e., φ(x < σ) → ∞ and φ(x >

σ) = 0, and the integral in the denominator equals exp(−β pσ)/β p. We have

g(1)(x) = 1

n

β p

exp(−β pσ)
×
{
0, x < σ
exp(−β px), x ≥ σ

.

It is easy to see that as p → 0, g(1)(x) approaches the Heaviside function because
in this limit the equation of state reduces to β p ≈ n (Problem 9.19).

Now g(2)(x) = ng(1)(x) ∗ g(1)(x) can be calculated directly using the formula
(u ∗ v)(x) = ∫ x

0 u(z)v(x − z) dz. We obtain

g(2)(x) = 1

n

[
β p

exp(−β pσ)

]2
×
{
0, x < 2σ
(x − 2σ) exp(−β px), x ≥ 2σ

.

The higher order correlation functions g( j) are calculated analogously one after
another.

Before plotting the obtained radial distribution function we recall that density,
pressure, and temperature are related by the equation of state; for hard spheres it
reads n−1 = L/N = σ + 1/β p (Problem 9.19). The full g+(x), which at x < 3σ
consists of g(1)(x) and g(2)(x), is depicted in Fig. 9.14. At high pressures, the pair
correlation function consists of a series of peaks separated approximately by σ. The
height of the peaks decreases with increasing distance from the reference particle,
whereas their width increases. In the correlation holes between the peaks the radial
distribution function drops significantly. At low pressures, however, the structure of
g+ is less pronounced: The peaks are lower and the holes are shallower. As already
mentioned, g+(x) ≈ g(1)(x) for p → 0; as a result, the radial distribution function
reduces to the Heaviside function, which agrees with the solution of Problem 9.20.
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Fig. 9.14 Radial distribution function of a one-dimensional hard-sphere ensemble: At high pres-
sures, the peaks and the correlation holes are quite prominent (β pσ = 8; solid line) whereas at low
pressures (β pσ = 1; dashed line), the radial distribution function is less structured and approaches
the Heaviside function for p → 0

Problem 9.24.
Derive the equation of state for plasmausing theDebye–Hückel approximationwhere
one assumes that each ion is exposed to a mean field of counterions!

Plasma is a gas consisting of cations and electrons. Since the electrostatic force
between these particles is long-range, the equation of state cannot be constructed
using a virial expansion. Namely, the second virial coefficient does not converge: For
r → ∞, B2 = (1/2)

∫∞
0

[
1 − exp

(−βqiq j/4πε0r
)]
4πr2 dr behaves approximately

as (βqiq j/2ε0)
∫∞ r dr and hence diverges; here qi and q j denote the charges of

the particles. However, physically the structure of plasma is quite clear: Each of the
cations is surrounded by an electron cloud, which screens the charge of the cation
(Fig. 9.15). This is not taken into account by the virial formalism at the level of
second virial coefficient, which includes only pair interactions.

Fig. 9.15 Screening in plasma: Each cation is surrounded by an electron cloud of a radius given
by the screening length 1/κ. (The sketch ignores the fact that the number of cations and electrons
must be equal to ensure electroneutrality)
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We, therefore, take a different route and describe screening using a continuum
model, restricting the discussion to two-component plasma with the two ion species
denoted by subscripts 1 and 2. The charges of two ion species are equal and
opposite, i.e., q1 = +q and q2 = −q, whereas their average number densities are
the same (N1/V = N2/V = n) as the system as a whole must be neutral so that
N1q1 + N2q2 = (N1 − N2) q = 0. We consider hot rarefied plasma where the total
electrostatic energy estimated by

(
q2/4πε0

) 〈r−1〉 ∼ q2n1/3/4πε0 (where n−1/3 rep-
resents an approximate average ion-to-ion distance) is small compared to the average
kinetic energy equal to 3kBT/2. Thus in hot rarefied plasma

n 

(
6πkBT ε0

q2

)3

.

Now we analyze the electric field around an ion of species 1. The Gauss law
∇ · D = ρe, where D = −ε0∇φ1, can be recast as

∇2φ1 = − 1

ε0
[qn1(r) − qn2(r)] ,

whereφ1 is the electric potential around the reference ion,whereasn1(r) andn2(r) are
the position-dependent densities of the remaining ions of species 1 and2, respectively.
The local density of ions is determined by the Maxwell–Boltzmann distribution

ni (r) = n exp

(

−qiφ1(r)
kBT

)

,

which makes the Gauss law nonlinear. In the Debye–Hückel approximation appli-
cable at high temperatures, the exponential can be expanded which yields ρe ≈
−2q2nφ1/kBT . Then one has

∇2φ1 = κ2φ1 ,

where κ stands for
√
2q2n/kBT ε0. Since φ1 is spherically symmetric and the radial

part of∇2 is equal to d2/dr2 + (2/r) d/dr , we find that φ1(r) ∝ exp (−κr) /r.More
precisely, as for r → 0 the potential has to agree with that of a bare ion of species 1,
we have

φ1(r) = q

4πε0r
exp (−κr) .

In plasma physics, this result is known as the Debye–Hückel potential, whereas
in nuclear physics, it is referred to as the Yukawa potential. We notice that κ−1

corresponds to the screening length, i.e., the size of the cloud of counterions around
the reference ion. In hot rarefied plasma n−1/3 
 κ−1, indicating that this cloud
contains many particles so that the continuum description used here is justified.

The correction of the internal energy due to electrostatic interactions between the
ions is equal to �U = (1/2)

(
N1q1φ̃1 + N2q2φ̃2

)
, where N1 and N2 are the numbers
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of particles for each species and φ̃i the electric potential felt by ion i . (With the
factor of 1/2 we avoid counting each pair interaction twice.) By taking into account
electroneutrality and the fact that q2 = −q1 = −q, we obtain

�U = qN φ̃1 ;

here N is the total number of ions of either species.
We must still determine φ̃1. To this end, φ1 is expanded for small r :

φ1(r) ≈ q

4πε0

1 − κr + O(r2)

r
= q

4πε0r
− qκ

4πε0
+ O(r) .

The first term represents the potential of a bare ion 1, whereas the second one is the
potential of the cloud of counterions at the site of ion 1 which represents the desired
φ̃1. The terms dropped are equal to 0 in the limit of r → 0. Finally we have

�U = − aN 3/2

(VT )1/2
,

where a = q3/π(2ε0)3/2k
1/2
B .

Now the equation of state can be obtained using purely thermodynamical con-
siderations, following the approach of Problem 4.10. From the internal energy
U (T, V ) = Uid(T ) − aN 3/2/(VT )1/2 [where Uid(T ) = 3NkBT/2 is the internal
energy of the ideal gas] we find

T 2

(
∂(p/T )

∂T

)

V

= T

(
∂ p

∂T

)

V

− p =
(

∂U

∂V

)

T

= aN 3/2

2V 3/2T 1/2
.

By dividing by T 2 and integrating over T we obtain

p = − aN 3/2

3V 3/2T 1/2
+ Tϕ(V ) ,

where ϕ(V ) is a function of volume still to be determined. For V → ∞, we must
recover the ideal gas equation of state pid = NkBT so thatϕ(V ) = NkB . In summary,

p = pid − aN 3/2

3V 3/2T 1/2
.

Due to the attractive forces between the oppositely charged ions, the pressure of
plasma is lower than in an ideal gas; screening evidently weakens the repulsive
interactions between like-charge ions.



Chapter 10
Entropy

Problem 10.1.
Assume that the shape of a liquid crystal molecule can be modeled by a hard sphe-
rocylinder of diameter σ and length d. An orientationally perfectly ordered sample
is confined between two parallel plates. Find the equilibrium molecular orientation,
provided that the interaction between the molecules and the plates is purely steric!

The volume of the positional phase space of each molecule depends on its ori-
entation. Figure 10.1 shows that the center of mass of a molecule cannot approach
the plate by less than [σ + (d − σ) cos θ] /2, where d, σ, and θ denote the length,
diameter, and tilt of the spherocylinder, respectively.

This distance represents the thickness of the depletion zone at the plate that is
inaccessible to the center of mass of the molecule; the volume of these zones is
referred to as the excluded volume. Hence the remaining available volume is

Va = A [h − σ − (d − σ) cos θ] ,

σ – σ

2
+ (d ) cos

Fig. 10.1 Spherocylinder at a plate: The smallest distance between the center of mass of the
spherocylinder and the plate depends on tilt angle θ; the corresponding depletion zone is shown in
light gray
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where A is the surface area of the plates and h is the width of the gap between the
plates. Since the probability density within the accessible part of phase space is con-
stant, we have exp

(−βF(θ)
) ∝ [∫

exp
(−βφ(r)

)
dr

]N = V N
a , where the irrelevant

degrees of freedom are omitted and we consider only the θ-dependent part of the
partition function, assuming that the molecules are independent; N is the number
of molecules. It is convenient to use F(π/2) as the reference Helmholtz free energy
and consider the difference

F(θ) − F(π/2) = −NkBT ln
h − σ − (d − σ) cos θ

h − σ

≈ NkBT
d − σ

h
cos θ ,

where in the end we assumed that h � d,σ. The thus obtained “anchoring” term
of the Helmholtz free energy of liquid-crystalline molecules is smallest for θ = π/2
which corresponds to the planar alignment, and decreases approximately as h−1 at
large h.

We note that the origin of this free energy term is entirely entropic. This can
be readily appreciated by calculating the internal energy of the ensemble given by
U = dβF/dβ. We find that apart from the kinetic term which is unimportant in the
context of anchoring, U is equal to 0. This is a consequence of the steric nature of
the interaction between the model molecules and the plates. As the internal energy
associated with anchoring vanishes, the corresponding Helmholtz free energy con-
sists solely of the −T S term. Such systems are referred to as “athermal” because
their behavior is independent of temperature, which merely rescales the value of the
Helmholtz free energy proportional to T .

Problem 10.2.
Two parallel plates with a surface area of 1 mm2 are immersed in a suspension of
small hard spheres 100 nm in diameter; the distance between the plates is 75 nm.
Calculate the force between the plates if the number density of the spheres is 1018/m3

and the temperature is 20 ◦C!

If the plate-to-plate separation h exceeds the diameter of the spheres σ, the
excluded volume inaccessible to the spheres’ centers of mass is equal to 2Aσ, where
A denotes the surface area of the plates (Fig. 10.2). The available volume is

Va(h > σ) = V − 2Aσ ,

where V denotes the total volume of the suspension. For plate-to-plate separations
smaller than σ, the spheres cannot enter the gap between the plates and the excluded
volume is equal to A(σ + h) (Fig. 10.2). Consequently, the available volume is

Va(h < σ) = V − A(σ + h) .
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Fig. 10.2 For plate-to-plate separations larger than the diameter of the spheres the volume of the
depletion zones (shown in light gray) does not depend on separation (a), whereas otherwise (b)
it does since the spheres cannot enter into the gap between the plates. This induces the so-called
depletion force

The Helmholtz free energy is calculated like in Problem 10.1. A convenient choice
of the reference Helmholtz free energy is the h > σ value which is independent of
the separation: In this case the interaction free energy reads

F(h) =
⎧
⎨

⎩
−NkBT ln

V − A(σ + h)

V − 2Aσ
, h < σ

0, h > σ
,

where N is the number of spheres. By taking into account that usually
V � 2Aσ, A(σ + h) and performing a series expansion, we find that the final form
of the interaction free energy reads

F(h) =
{−nkBT A(σ − h), h < σ
0, h > σ

,

where n = N/V denotes the number density of spheres. We conclude that for h < d
the force between the plates is attractive and independent of separation:

F = −
(

∂F

∂h

)

T

= −nkBT A .

For the given data, F = −4.04 nN. For h < σ, this so-called depletion attraction
results from the pressure of the gas of spheres acting on each plate from the outside
but not from the inside as the spheres cannot enter the gap between the plates. On the
other hand, for h > σ the pressure is the same on both sides of the plates; therefore,
no net attraction is observed.
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Problem 10.3.
Calculate the force between two flat membranes of surface area of 1 mm2 separated
by 0.1 μm and immersed into a 0.01% water solution of tobacco mosaic virus at
20 ◦C! The virus is a 0.3 μm-long hard rod with an approximate kilomolar mass of
3.1 × 107 kg/kmol.

The relevant part of the phase space depends on the position and the orientation
of the rods; the latter is given by the polar angle θ (measured with respect to the
membrane normal) and by the azimuthal angle φ, which is unimportant in the present
context. Note that the rods are characterized by head–tail symmetry and thus the polar
angles θ and π − θ correspond to the same state; therefore, it suffices to consider
only tilts between 0 and π/2. At a given θ, the closest distance between the center
of mass of the rod and the membrane is (d/2) cos θ, where d is the rod length.

For membranes separated by h > d, the partition function reads

exp
(−βF(h > d)

) ∝
∫ π/2

0
sin θ dθ

∫

Va(θ)

dr

=
∫ π/2

0
(V − 2Ad cos θ) sin θ dθ

= V − Ad ,

where we took into account that the available volume at a fixed θ is given by
Va(θ) = V − 2Ad cos θ; here A stands for the surface area of the membranes. For
h < d, there exist two regimes: When θ exceeds

θmin = arccos

(
h

d

)
,

the rod can enter into the gap between the membranes and one has
Va(θ) = V − 2Ad cos θ as before, whereas in the opposite case the rod cannot fit
between the membranes and Va(θ) = V − A (d cos θ + h). We obtain

exp
(−βF(h < d)

) ∝
∫ θmin

0
[V − A (d cos θ + h)] sin θ dθ

+
∫ π/2

θmin

(V − 2Ad cos θ) sin θ dθ

= V − Ad + Ad

2

(
1 − h

d

)2

.

Like in Problem 10.2, the Helmholtz free energy is calculated with respect to
F(h > d), yielding

F(h) =
⎧
⎨

⎩
−NkBT ln

V − Ad + Ad (1 − h/d)2 /2

V − Ad
, h < d

0, h > d
.
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Again we assume that V � Ad, Ah which gives

F(h) =
{−nkBT Ad (1 − h/d)2 /2, h < d
0, h > d

,

where n = N/V . The range of the thus obtained depletion attraction depicted in
Fig. 10.3 is h = d and the force reads

F = −
(

∂F

∂h

)

T

= −nkBT A

(
1 − h

d

)
.

The numerical result: For the given kilomolar mass, the virus number density in
a 0.01% water solution is 1.94 × 1018/m3 and the attractive force between two
membranes with a surface area of 1 mm2 is equal to −5.23 nN.

0 0.2 0.6 1.00.4
h d/ , h/

–0.5

–1.5

–1

0.5

0

1.20.8

F/nk TAB

Fig. 10.3 Depletion force between two parallel membranes separated by h induced by hard rods of
length d (solid line) compared to that due to hard spheres of diameter σ (dashed line; Problem 10.2).
The range of the depletion force is equal to the size of the particles that induce the force

We conclude by suggesting a shortcut leading directly to the same result. The
depletion interaction induced by the rods can also be obtained by treating the rods
tilted at an angle θ as spheres of an effective diameter d cos θ. Now we take into
account that only spheres satisfying the d cos θ > h condition contribute to depletion
and use the result of Problem 10.2 to find that

F(h < d) = −nkBT A
∫ θmin

0
(d cos θ − h) sin θ dθ .

Problem 10.4.
Calculate the force between two identical hard spheres in a polystyrene solution at
20 ◦C! The radii of the spheres are 1μm and their center-to-center distance 2.1μm.
A polystyrene molecule can be represented by a spherical aggregate of a radius of
80 nm, and one liter of the solution contains 1.3 × 1022 such aggregates.
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The answer can be obtained by retracing the solution to Problem 10.2. As long as
the distance between the centers of the spheres denoted by h exceeds 2R + σ (here
R is the radius of the spheres and σ is the diameter of a polystyrene molecule), the
volume available to each polystyrene molecule in the solution is equal to

Va

(
h > 2R + σ

)
= V − 8π

3

(
R + σ

2

)3
,

where V stands for the total volume of the system. For h smaller than 2R + σ,
however, the available volume increases due to the partial overlap of the excluded
volumes of the spheres. Their intersection is represented by a lens-like body con-
sisting of two identical spherical caps of thickness � = R + σ/2 − h/2 and a total
volume of 2π�2 [3 (R + σ/2) − �] /3. From here one has

Va
(
h < 2R + σ

) = V − 8π

3

(
R + σ

2

)3

+2π

3

(
R + σ

2
− h

2

)2 (
2R + σ + h

2

)
.

We express the Helmholtz free energy relative to F
(
h > 2R + σ

)
and we take into

account that the total volume is much larger than the excluded volume. Thus we
obtain

F(h) =
{−πnkBT (2R + σ − h)2 (2R + σ + h/2) /6, h < 2R + σ
0, h > 2R + σ

.

The attractive depletion force arises at sphere separations h between 2R and 2R + σ
and is equal to

F = −πnkBT

(
R + σ − h

2

) (
R + σ + h

2

)
;

at the given input data F = −10.55 pN.

Problem 10.5.
A pair of parallel plates is immersed into a dilute suspension of soft spheres. The
diameter of the spheres is 100 nm, the plate-to-plate distance is 70 nm, and the
surface area of the plates is 1 dm2. The interaction energy between a sphere and
a plate is zero if they do not overlap and 5 × 10−3 eV if they do. The density of the
spheres is 1016/m3; sphere–sphere interaction is negligible. Find the force acting on
the plates at 20 ◦C! What is the amount of work expended if the distance between
the plates is doubled isothermally?

Like in Problem 10.2, we first calculate the partition function at h > σ, where h
is the width of the gap between the plates and σ is the diameter of the soft spheres.
The volume of the container V can be divided into two parts. The first one contains
the region where the spheres do not overlap with the plates; this corresponds to the
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allowed volume of Problem 10.2. The second part consists of the depletion layers of
thickness σ/2 just next to the plates. Due to their softness, spheres may be present
in these layers but this is associated with an increase of energy by φ0 > 0 and hence
with at a lower probability. We consider N soft spheres and following the same
procedure as in Problem 10.2, we find that at a plate-to-plate distance h < σ and low
densities

exp (−βF) ∝ [
V − A(σ + h) + A(σ + h) exp (−βφ0)

]N
,

where A is the surface area of a single plate. By assuming that V � A(σ + h), we
obtain the force between the plates:

F = −
(
dF

dh

)

T

= −NkBT A

V

[
1 − exp (−βφ0)

]
.

The force is attractive, its magnitude being 73 nN. It is also interesting to consider
two limiting cases: For φ0 → ∞ the spheres are hard, yielding F = −NkBT A/V
like in Problem 10.2. On the other hand, for φ0 → 0 the sphere-plate interaction
vanishes and so does the depletion force between the plates.

A nonzero force is observed as long as the depletion layers at the two plates
overlap, i.e., for h < σ. For h > σ, the Helmholtz free energy F does not depend on
h, which leads toF = 0. Thus, upon doubling the distance between the plates, work
against the depletion force is expended only up to h = σ = 100 nm. At a constant
temperature and starting from h′ = 70 nm we obtain

W = NkBT A

V

[
1 − exp (−βφ0)

]
(σ − h′) = 2.2 × 10−15 J.

Problem 10.6.
Apair of parallel plates is immersed in adilute suspensionof rod-likemolecules. Each
molecule is 20 nm long, the distance between the plates is 15 nm, and the surface
area of the plates is 1 m2. Calculate the change of force acting between the plates
after a magnetic field of strength 106 A/m is applied isothermally perpendicular
to the plates! The interaction of a molecule with the magnetic field is given by the
Hamiltonian Hm = −γ(a · H)2, where a is a unit vector along the long molecular
axis and H is the magnetic field strength; γ = 10−34 Vsm2/A. One cm3 of the
suspension contains 1014 molecules; temperature is 300 K.

By following the approach and notation of Problem 10.3, for h < d the partition
function for N independent molecules can be written as

exp (−βF) ∝
{∫ θmin

0

[
V − A(h + d cos θ)

]
exp (α cos2 θ) sin θdθ

+
∫ π/2

θmin

[
V − 2Ad cos θ

]
exp (α cos2 θ) sin θdθ

}N

,
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where α = βγH 2 ≈ 0.024. Since α 	 1, the Boltzmann factors can be expanded to
first order. By integrating over θ and assuming V � Ad, Ah we first obtain F and
then the force:

F = −NkBT A

V

[
1 − h

d
+ α

3

(
1 − h3

d3

)]
.

For α = 0 (corresponding to zero field), we recover the result of Problem 10.3. If
H 
= 0, the magnitude of the attractive depletion force between the plates increases
by

�F = N

V

AγH 2

3

(
1 − h3

d3

)
≈ 1.9 mN.

For α 
= 0 the molecules align preferentially along the field, which increases the
number of molecules oriented perpendicular to the plates. As these molecules cannot
enter the gap between the plates, the depletion interaction is enhanced.

Problem 10.7.
Using the cell approximation, estimate the difference of the Helmholtz free energies
of the hexagonal and square crystal lattice of hard disks!

In the cell approximation of a solid, each particle is assumed tomove onlywithin a
cell defined by its neighbors which ensures, in a simple manner, that the neighboring
particles do not overlap as dictated by hard-core repulsion between them. (Note that
this condition ismore restrictive than the requirements imposed by the pair interaction
between disks.) The two crystal lattices in question are divided into cells using the

ba

Fig. 10.4 Voronoi tessellation shows that the cell confining a given disk is a square in the case
of the square lattice (a) and a regular hexagon in the case of the hexagonal lattice (b); light gray
circles represent the disks in equilibrium positions. The available surface area at the density shown
is shaded in dark gray and is visibly larger in the hexagonal lattice; the densities of both lattices
plotted are the same. The dashed contours depict a few possible allowed positions of a disk within
its cell

Voronoi tessellation depicted in Fig. 10.4. The thus obtained Voronoi cells reflect
the lattice symmetry; in the cubic lattice they are squares, whereas in the hexagonal
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lattice, they are regular hexagons. In both cases (but not in general), the shape of
the two-dimensional figure defined by the locus of all possible positions of the disk
center is the same as the shape of the cell itself.

We now calculate the available surface area for the square lattice. From Fig. 10.4
we deduce that it is equal to As

a = (a − σ)2, where a is the side of the cell and σ is the
diameter of the disk. Since each cell contains a single disk,we have n = N/A = 1/a2

and thus a = 1/
√
n. Therefore As

a = σ2
(
1/

√
nσ2 − 1

)2
. The available surface area

vanishes for nσ2 = 1, which corresponds to the highest possible density of a cubic
lattice. The part of the Helmholtz free energy that depends on the symmetry of the
lattice is obtained fromexp(−βFs) ∝ As

a . By dropping the constant term−2kBT ln σ
which is identical in both lattices, we finally have

Fs = −2kBT ln

(
1√
nσ2

− 1

)
.

In the hexagonal lattice,we alsofirst relate the disk number density to cell size:n =
1/2

√
3v2. Here v is the height of each of the six equilateral triangles that constitute

the cell. The available surface area is Ah
a = σ2

(
1/

√
nσ2 − 31/4/21/2

)2
. It is easy to

see that Ah
a = 0 for nσ2 = 2/

√
3 ≈ 1.15, i.e., at a density higher than for As

a .
Like in the square lattice we now obtain

Fh = −2kBT ln

⎛

⎝ 1√
nσ2

−
√√

3

2

⎞

⎠ .

The Helmholtz free energies of the square and the hexagonal lattice of hard disks
obtained using the cell approximation are shown in Fig. 10.5. Evidently, the hexago-
nal lattice is more stable than the square lattice at all densities. This is also reflected

5

10

0
0.4

n 2

15

0.6 1.0 1.20.8

F k T/ B

Fig. 10.5 Helmholtz free energy of hard disks in a hexagonal and square lattice (solid and dashed
line, respectively) obtained using the cell approximation plotted as a function of reduced density.
The terms that do not depend on the symmetry of the lattices are omitted
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in a higher value of the packing fraction of the hexagonal lattice. The packing fraction
is defined as the fraction of surface area covered by the disks at the highest possible
density (where neighbors touch each other). In the hexagonal lattice, the packing
fraction is π/2

√
3 ≈ 0.9069, whereas in the square lattice it is π/4 = 0.7854. In a

similarway, one can check that in three dimensions the face-centered cubic lattice and
the hexagonal close-packed lattice are the most stable arrangements of hard spheres.
The more sophisticated calculations that include the entropy of the correlated motion
of the particles—long-wave phonons which are omitted in the cell approximation—
confirm the qualitative results presented above. We also mention that the square
lattice consisting of hard disks is mechanically unstable because its free energy is
decreased upon an infinitesimally small shear deformation.

Problem 10.8.
In a simple model of the nematic liquid crystal, we assume that the molecules are
hard cylindrical rods. Estimate the density of the nematic-isotropic phase transition!
Assume that in the isotropic phase the neighboring molecules are mostly perpendic-
ular to each other, whereas in the nematic phase they are rather well aligned.

We denote the length and the diameter of the molecules by d and by σ 	 d,
respectively. In order to simplify the analysis, we assume for the moment that the
nematic phase is orientationally perfectly ordered so that all themolecules are aligned
in the same direction. In this case, the excluded volume around each molecule that
is inaccessible to the centers of mass of the neighboring molecules corresponds to a
cylinder of height 2d and radius σ. The volume of this cylinder is 2πσ2d. In a system
with a particle number density n, an average volume belonging to a molecule is
n−1. Consequently, the available volume per molecule is given by n−1 − πσ2d; note
that only one half of the excluded volume is assigned to each molecule (Fig. 10.6).
In reality, the orientational order is partial rather than perfect as assumed above; in
addition to the available volume, the partition function also includes the integral over
all possible orientations of a given molecule with respect to the reference molecule,
estimated by

∫
d� ∼ 1. At the same time, we assume that the available volume does

not depend on the relative orientation of the molecules. Like in Problem 10.7, a
common constant term−kBT ln V0 is subtracted from the Helmholtz free energy per
molecule, where V0 = πσ2d/4 is the volume of one molecule. In the nematic phase
one thus has

FN = −kBT ln

(
1

nV0
− 4

)
.

In the isotropic phase, the angle between two molecules is arbitrary. In this case, a
rough order-of-magnitude estimate of the excluded volume can be obtained by plac-
ing the neighboring molecules at right angles. The volume around each molecule
inaccessible to othermolecules is an upright prism of height d + σ and a base approx-
imately given by a rectangle with sides 2σ and d + σ. The volume of the prism is
2σ(d + σ)2 ≈ 2σd2. Therefore, the available volume is now given by n−1 − σd2,
whereas the orientational part of the partition function is

∫
d� = 4π. By subtracting

the constant contribution−kBT ln V0, the Helmholtz free energy per molecule in the
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Fig. 10.6 Excluded volume of rod-like molecules in the nematic and the isotropic phase, with
the reference molecule depicted sidewise (a) and lengthwise (b). The gray shading indicates the
characteristic cross sections of the excluded volume inaccessible to the centers of mass of the
neighboring molecules

isotropic phase is given by

FI = −kBT ln

(
4π

(
1

nV0
− 4d

πσ

))
.

At the phase transition, which is achieved by varying the density just like in all other
athermal systems and not by changing temperature, the Helmholtz free energies of
the two phases must be equal. This condition gives an order-of-magnitude estimate
of the density at the transition:

nN I ∼ 1

σd2
.

Here we assumed that σ 	 d.
Note that even this simple model can provide a sound insight into the nematic-

isotropic transition. To this end, we plot the Helmholtz free energies of the nematic
and of the isotropic phase as a function of 1/nV0, which represents the reduced
volume of the system (Fig. 10.7). It turns out that for d/σ < π, the free energy of the
isotropic phase is smaller than that of the nematic phase at any density. This means
that molecules that are not sufficiently elongated cannot form a nematic phase. On
the other hand, if d/σ > π the free energy of the isotropic phase is smaller than that
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of the nematic only at low enough densities: At high densities (i.e., at low reduced
volumes 1/nV0) the isotropic phase is replaced by the nematic phase.

Figure 10.7 also reveals that close to the reduced volumewhere theHelmholtz free
energies of the two phases are the same, the system features a coexistence of the nem-
atic and isotropic phase of densities determined by the Maxwell double-tangent con-
struction. This construction also ensures mechanical equilibrium, with the pressure

Fig. 10.7 Helmholtz free energy of the isotropic (full lines; d/σ = 1 and 5) and of the nematic
phase (dashed line) as a function of reduced volume: The former depends on the length-to-diameter
ratio of the molecules, whereas the latter does not. For d/σ < π the isotropic phase is more stable
than the nematic phase at all densities. For d/σ > π, the isotropic phase is replaced by the nematic
phase at a high enough density; the dotted line is the Maxwell double-tangent construction. The
arrows indicate the density ranges of the nematic (N ) and the isotropic phase (I ) as well as their
coexistence (N + I ); all plotted for d/σ = 5

p = − (∂F/∂V )T being the same in both phases. Phase coexistence reduces the
free energy compared to either single phase and guarantees mechanical stability.
Namely, the isothermal compressibility of the system is inversely proportional to(
∂2F/∂V 2

)
T and since it must be nonnegative, the Helmholtz free energy should be

a convex function of volume.
A more complete calculation of this kind was proposed by Onsager who was

the first to identify the microscopic mechanism of liquid-crystalline ordering origi-
nating in the competition between the orientational and the translational entropy of
molecules.

Problem 10.9.
When an atom escapes from the bulk to the surface of a crystal, a hole is left behind in
the lattice; this is referred to as the “Schottky defect”. Calculate the concentration
of such defects in a crystal of silicon at 300 ◦C, given that the binding energy of
an atom in the bulk exceeds that of an atom at the surface by 2.6 eV! The number
density of silicon atoms is 5.02 × 1028/m3.
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The energy of a crystal containing N ′ defects is equal to E(N ′) = N ′w, where
w > 0 is the difference of binding energies at the surface and in the bulk. The entropy
of a crystal consisting of N atoms and N ′ defects is approximately
S(N ′) = kB ln

(
(N + N ′)!/N ′!N !) ≈ kB

[
(N + N ′) ln(N + N ′) − N ′ ln N ′ − N ln N

]
,

since the number of different possible arrangements of N ′ defects onto N +
N ′ sites (occupied by either atoms or defects) is given by the binomial symbol(
N+N ′
N

)
= (N + N ′)!/N ′!N ! (Fig. 10.8). This estimate is not entirely accurate as it

Fig. 10.8 In a N -atom crystal (full circles), N ′ Schottky defects (empty circles) can be arranged
in approximately (N + N ′)!/N ′!N ! ways

includes also the meaningless configurations with defects at the surface. However,
the fraction of such configurations is small if the defects are few, and in this case,
the above approximation is justified.

The free energy of a crystal containing N ′ defects is thus

F(N ′) = N ′w − kBT
[
(N + N ′) ln(N + N ′) − N ′ ln N ′ − N ln N

]
.

The equilibrium number of defects is determined by requiring that
(
∂F/∂N ′)

T = 0
or

N ′(T ) = N

exp(w/kBT ) − 1
≈ N exp

(
− w

kBT

)
,

where we took into account that the number of defects is small. For w = 2.6 eV,
T = 300 K, and N/V = 5.02 × 1028/m3, the number density of defects is 7.13 ×
105/m3.

Problem 10.10.
Analyze the temperature dependence of entropy in a two-level system consisting of
independent distinguishable particles! What is the entropy of 100 particles at 20 ◦C
if the levels are 0.05 eV apart?
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The phase space is determined by the number of particles occupying one of the
energy levels. We use N ′ to denote the number of particles in the upper state with
energy w so that the number of particles in the lower state where the energy is
0 is N − N ′. Hence the total energy of the system is E(N ′) = N ′w. The number

of possible arrangements with a given energy is
(

N
N ′

)
= N !/N ′!(N − N ′)! and the

corresponding entropy reads

S(E) = kB ln
N !

(E/w)! [N − (E/w)]! .

One can see that S(0) = 0 and that S(E < Nw) = S(Nw − E) (Fig. 10.9): The
entropy increases at energies smaller than Nw/2, reaches a maximum at Nw/2, and
drops to 0 again at E = Nw. A non-monotonic dependence of S(E) is encountered
only in systems where the energy spectrum is bounded from above and where the
degeneracy of energy levels does not exhibit a pronounced increase with increasing
energy.

In this system, temperature is uniquely related to energy. As the system cannot
performwork against its environment, the first law of thermodynamics can bewritten
as dE = dQ and one has dS = dQ/T = dE/T . From here we obtain

T =
(
dS

dE

)−1

.
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Fig. 10.9 Entropy of a two-level system as a function of energy plotted for N = 100 particles.
The left half of the diagram where the entropy is an increasing function of energy corresponds to
positive temperatures; in the right half where the entropy decreases, the temperature is negative

Temperature thus corresponds to the inverse value of the derivative of S(E). It is finite
and positive at E = 0, exhibits a first-order vertical asymptote (a pole) at Nw/2, and
its value at E = Nw is equal and opposite to that at E = 0. At energies between
Nw/2 and Nw where the upper level is more populated than the lower one, the
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temperature is negative. (There is no need to worry about this, as temperature is
merely a parameter of the Maxwell–Boltzmann distribution. In reality, a nonequilib-
rium inverted population can be obtained by supplying work to a thermally insulated
system; for example when studying nuclear magnetic relaxation after an applica-
tion of a radio-frequency pulse, or in a laser when achieving pronounced stimulated
emission.)

The dependence of temperature on entropy can be explored in the limit N , N ′ →
∞. Using the Stirling formula ln N ′! ≈ N ′ ln N ′ − N ′ we obtain S(E) ≈ kB

[
N ln N

− (E/w) ln(E/w) − (N − E/w) ln(N − E/w)
]
, which results in

T ≈ w

kB

[
ln

(
Nw

E
− 1

)]−1

.

Nowwecan explicitly express S(T ) and E(T ), which is convenient in systems that
are in contact with a thermostat at a temperature T . The high-temperature limit of the
energy is Nw/2, whereas the entropy for large N tends to NkB ln 2; at low tempera-
ture both energy and entropy approach 0 (Fig. 10.10). At low temperatures the system
minimizes the energy so that all particles occupy the lower level, whereas at high
temperatures the maximum-entropy arrangement is preferred, which leads to equal
occupancy of the two levels. At finite temperatures, these two contrasting tendencies,

0 2 6 8 104
kBT/w

S E w/ /kB,

20

0

40

60

80

Fig. 10.10 Entropy (full line) and energy (dashed line) of a two-level system with N = 100 as
a function of temperature. At low temperatures, the results are not exact as we used the Stirling
formula

which may also be seen as the order vs. disorder dichotomy, are combined in the
Helmholtz free energy. Finally, the numerical answer: At 20 ◦C and the energy-level
difference of 0.05 eV the entropy of 100 particles equals 39.6 kB = 5.47 × 10−22 J/K.
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Problem 10.11.
Explore the stability of the ferromagnetic phase in two dimensions! The system is
modeled by the Ising Hamiltonian with nearest-neighbor interactions only:

H = −J
∑

i, j neighbors

si s j .

Here J is the exchange integral and si = ±1/2 the spin component along the z-axis.
What about one-dimensional systems?

The energy of two parallel neighboring spins is equal to −J/4 regardless of
whether they point up (si = s j = +1/2) or down (si = s j = −1/2). We view the
paramagnetic phase as a collection of spin domains with si = −1/2 in a uniform
background of spins with si = +1/2. By expressing it relative to the background
state, we see that the energy consists solely of the terms corresponding to pairs
of spins of opposite orientation, which lie at the domain boundaries (Fig. 10.11).
Relative to the energy of parallel spins, which is −J/4 per pair, the energy of a
boundary of length L expressed in terms of the number of spins along the boundary
is E = J L/2 as the energy of an antiparallel pair is +J/4.
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Fig. 10.11 Ising model in 2D with a domain of spins pointing down in a background of spins
pointing up. Only pairs of antiparallel spins along the domain wall (solid line) contribute to the
energy of the paramagnetic phase. As the domain energy depends on its circumference rather than
on its surface area, the domain plotted by the dotted line has the same energy as the one shown. At
each lattice point, the domain boundary can be continued in 3 directions as shown by the arrows.
This indicates that there exist approximately 3L domains of same boundary circumference L

We now estimate the entropy of the domain boundary. For simplicity, we assume
that the spins lie on a square lattice. In this case, in each lattice point, the domain
boundary may be continued in three different directions. Hence the number of dif-
ferent domains of length L , all of them having the same energy J L/2, is equal to
3L and the corresponding entropy is kB ln 3L ; here, we neglected the fact that the
boundary must be a closed loop and thus our estimated entropy is too large.
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By combining the energy and the entropy terms, we find that the Helmholtz free
energy of a domain is

F2D = J L

2
− kBT ln 3L =

(
J

2
− kBT ln 3

)
L

and is proportional to the domain boundary circumference L . We see that at temper-
atures above

Tc = (2 ln 3)−1 J

kB
= 0.455

J

kB

the formation of domains of arbitrary size reduces the Helmholtz free energy of
the ferromagnetic phase which therefore becomes unstable. Domain formation is
favorable because the magnitude of the entropic term in the free energy increases by
more than the corresponding energy term once a domain is created, which results in
a net decrease of Helmholtz free energy. On the other hand, below Tc the domains
increase the free energy so that the ferromagnetic phase is stable. Our simplified
analysis certainly cannot produce an accurate estimate of the critical temperature Tc;
its exact value is due to Onsager and reads

Tc =
[
2 ln

(√
2 + 1

)]−1 J

kB
= 0.567

J

kB
.

In one dimension, only two pairs of spins contribute to the energy of a domain
boundary regardless of domain size. Here, the domain energy (again calculated
relative to the perfectly ordered ferromagnetic phase with all spins aligned) is equal
to J . In a N -spin system, the first edge of a domain can be placed at N − 1 sites
and the second can be at the remaining N − 2 sites. The number of domains with
same energy is thus (N − 1)(N − 2)/2 ∼ N 2, where the factor 1/2 accounts for the
double-counting of domains within the above scheme. It follows that

F1D = J − 2kBT ln N ,

which approaches −2kBT ln N in the thermodynamic limit N → ∞. In one dimen-
sion, the formation of domains is favorable at all temperatures, which means that
ferromagnetic order cannot exist at any T > 0.

Problem 10.12.
In a simple two-dimensional model, a polymer is represented by a chain of segments
on a square lattice. The energy of a bond between two monomers is 0.1 eV if the
monomers are mutually perpendicular and 0 for a stretched-out configuration. The
hairpin configuration where the angle between two consecutive segments is equal to
π is not allowed. Calculate the conformational part of the heat capacity of a 100-
monomer chain at 300 K! Explore the high- and the low-temperature limits! The
kilomolar mass of a monomer is equal to 78 kg/kmol.
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Following Problem 10.10, we first determine the size of phase space occupied by
configurations with N bonds and N ′ corners (Fig. 10.12):

��(N ′) = N !
N ′!(N − N ′)!2

N ′
,

where the factor of 2N
′
arises because of the two degenerate perpendicular confor-

mations that are possible for each bond. The energy of the polymer is E = wN ′ and
its entropy is S(E) = kB ln��(E) or

S(E) = NkB

[
E

Nw
ln 2 −

(
1 − E

Nw

)
ln

(
1 − E

Nw

)
− E

Nw
ln

E

Nw

]
,

where we used the Stirling formula ln n! ≈ n ln n − n. Thus the inverse tempera-
ture is 1/T = dS/dE = (kB/w) [ln 2 + ln (Nw/E − 1)]. Finally, we have E(T ) =
Nw/

[
1 + exp(w/kBT )/2

]
and

C(T ) = NkB

(
w

kBT

)2 exp(w/kBT )/2
[
1 + exp(w/kBT )/2

]2 .

Fig. 10.12 Lattice model of a polymer: A corner carries an energy w, whereas the energy of a
stretched-out bond is zero. The model also allows for intersecting configurations

At low temperatures we have C(T ) ≈ 2NkB(w/kBT )2 exp(−w/kBT ), whereas at
high temperatures, we obtain C(T ) ≈ (2NkB/9)(w/kBT )2. For w = 0.1 eV we
obtain c = C/(N + 1)m0 = 60.6 J/kgK; here m0 denotes the mass of a single
monomer.

The same result is obtained by starting from the partition function for N indepen-
dent bonds where exp(−βF) = [

1 + 2 exp(−w/kBT )
]N

.
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Problem 10.13.
Let the interatomic interaction in a nonideal gas be given by

φ(r) =
⎧
⎨

⎩

∞, r < σ
φ0 (r/σ − 2) , σ ≤ r < 2σ
0, r ≥ 2σ

.

A liter of such a gas at 300 K is isothermally expanded so that its volume increases
by a factor of 10. How much heat does the gas exchange with the environment in
this process? How does the result differ from that obtained with an ideal gas? What
fraction of the correction originates in attractive/repulsive forces between atoms?
The initial pressure is equal to 107 Pa; φ0 = 10−3 eV and σ = 0.2 nm.

We first calculate the second virial coefficient which reads

B2 = 4V0(1 − 11βφ0/4) .

Here, we took into account that βφ0 	 1; V0 = πσ3/6. Upon reversible isothermal
expansion at T = 300 K, the heat exchanged by the gas with the environment reads
Q = T�S, where�S is the change of entropy in the process. From F = 〈E〉 − T S it
follows that �S = (�〈E〉 − �F)/T and, in turn, Q = �〈E〉 − �F . Now we need
to calculate the changes of the internal and of the Helmholtz free energy of the gas.
(Recall that in isothermal changes�F represents the maximal amount of work that a
system can expend, the maximum corresponding to a reversible process. Therefore,
the expression for Q is nothing but the first law of thermodynamics.) 〈E〉 includes
the kinetic and the interaction term Uk(T ) and Ui (T, V ), respectively, which are
derived in Problem 9.14:

〈E〉 = Uk(T ) +Ui (T, V ) = Uk(T ) − 11N 2φ0V0

V
.

The free energy too consists of the kinetic and the interaction term Fk(T ) and
Fi (T, V ), respectively; we borrow them from Problem 9.13:

F = Fk(T ) + Fi (T, V ) = Fk(T ) − β−1 ln Z(T, V )

= Fk(T ) − kBT

[
N ln V − 4V0N 2

V

(
1 − 11φ0

4kBT

)]
.

Since expansion is isothermal, the kinetic terms of the energy and Helmholtz free
energy remain unchanged. By collecting all terms and taking N ≈ β pV ′ = 2.4 ×
1024, we have

Q = T�S = NkBT

[
ln

V

V ′ + 4V0N

(
1

V ′ − 1

V

)]
= 2.33 × 104 J .
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The obtained value exceeds the ideal gas result—the ln V/V ′ term—by 1.6%. Only
repulsive forces contribute to the correction; all terms containing the constant φ0

which originates in the attractive part of the potential cancel out.

Problem 10.14.
In a polymer chain, each monomer can be bonded in three ways: In the first case, its
contribution to the length is a, in the second 2a, and in the third 4a.A stretching force
of 1 pN is applied isothermally to a polymer consisting of 10monomers. Calculate
the elongation of the polymer if the temperature is 300 K! How much heat does it
exchange with the environment? Assume that a = 1 nm!

For generality, we denote the contribution of each monomer in the three bonding
configurations to the length of the polymer by a, b = 2a, and c = 4a. The partition
function for a N -monomer chain reads (Problem 9.10)

exp (−βG) = [
exp (βaF) + exp (βbF) + exp (βcF)

]N
,

where F stands for the stretching force. The average length is then equal to

〈� 〉 = −
(

∂βG

∂βF

)

β

= N
a exp (βaF) + b exp (βbF) + c exp (βcF)

exp (βaF) + exp (βbF) + exp (βcF)
.

In the force-free polymer we have 〈� 〉 = N (a + b + c)/3 = 23.3 nm and in the
loaded polymer at 1 pN 〈� 〉 = 27.2 nm. The elongation of the polymer is thus 3.9 nm
or 16.6%.

The heat exchanged with the environment at a given temperature (T ) is calculated
from the change of entropy: Q = T�S. In turn, the change of entropy is extracted
from the changes of the average enthalpy and the Gibbs free energy, i.e., �S =
�(〈H〉 − G)/T . The average enthalpy of the polymer is equal to

〈H〉 =
(

∂βG

∂β

)

F
= −F〈� 〉 ,

whereas the Gibbs free energy is given by

G = −NkBT ln
(
exp (βaF) + exp (βbF) + exp (βcF)

)
.

Finally we have

Q=�〈H〉 − �G

=−F〈� 〉 + NkBT
[
ln

(
exp(βaF) + exp(βbF) + exp(βcF)

) − ln 3
]

=−12.1 meV .

Upon loading, heat is released by the polymer like in the elastocaloric effect.
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Problem 10.15.
In a chain polymerization process, the probability of adding a new monomer onto
an existing linear chain does not depend on chain length. Calculate the width of
the probability distribution of the chain length at the end of the process if the aver-
age chain length has reached 103 monomers! What is the polydispersity coefficient
〈n2〉/〈n〉2 − 1, where n denotes the chain length?

We first determine the probability distribution of chain lengths w(n). We use P
to denote the probability of establishing a bond when a free monomer approaches an
active reactive center at the end of an existing chain. The probability of observing
n successful bonding events after N attempts (which leads to a chain consisting of
n + 1 monomers) is

w(n) = N !
n!(N − n)! P

n(1 − P)N−n .

In the above expression, one can recognize the binomial distribution. The average
chain length is equal to 〈n〉 + 1 = N P + 1. If wewish to grow chains of a given aver-
age length and have P → 0 at the same time, the process of polymerization should

n

w( )n
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Fig. 10.13 Probability distribution of polymer chain lengths upon chain polymerization for
〈n〉 = 5 × 102 (a), 103 (b) in 1.5 × 103 (c)

be lengthy with N → ∞. By keeping 〈n〉 = N P constant when taking this limit, the
binomial distribution is transformed into the Poisson distribution (Fig. 10.13) and

w(n) = 〈n〉n
n! exp

(−〈n〉) .
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We replace 〈n〉 in the normalization integral
∫ ∞
0 w(n) dn = 1 by k〈n〉, take the

derivative with respect to k twice, insert k = 1, and obtain 〈n2〉 = 〈n〉2 + 〈n〉. The
width of the Poisson distribution at 〈n〉 = 103 is therefore

√〈n2〉 − 〈n〉2 = √〈n〉 =
31.6 monomers. The polydispersity coefficient is equal to

〈n2〉
〈n〉2 − 1 = 1

〈n〉 = 0.001

and decreases with increasing chain length.

Problem 10.16.
The microscopic structure of rubber is similar to a network of freely jointed polymer
chains. In a simple model we assume that all chains are of same length and that
there are no chain entanglements between the crosslinks. In this case, the probability
distribution of chain end-to-end distances r is Gaussian

w(r) =
(

3

2πNa2

)3/2

exp

(
− 3r2

2Na2

)
,

where a is a monomer length and N is the number of monomers between crosslinks
on the same chain. Calculate the Young’s modulus of rubber, assuming that the
deformation is affine at themicroscopic level and that the sample is incompressible! A
sample of volume of 10 cm3 consists of 1023 monomers, N = 100, and temperature
is 300 K!

Given that in this model the chains are assumed to be ideally flexible (so that
their conformational internal energy is neglected), the elasticity of rubber is entirely
entropic. The Helmholtz free energy of a single chain in an undeformed rubber
sample is equal to

F ′ = −T S = −kBT lnw(r) = F0(T ) + 3kBT r2

2Na2
,

where F0(T ) is a temperature-dependent constant. We assume that the rubber is
uniaxially stretched along the z-axis and we denote the relative stretching factor
by λ. Because of the constant-volume constraint the sample contracts along the x-
and y-axis by a factor of λ−1/2 (Fig. 10.14). Upon deformation, the initial value of
r2 = x2 + y2 + z2 for a single chain is changed and reads (x2 + y2)/λ + λ2z2. The
corresponding distribution w(r) changes too as the deformation affects the number
of available configurations between chain ends, which decreases with increasing
end-to-end distance and vice versa. The Helmholtz free energy of a deformed chain
reads

F = F0(T ) + 3kBT

2Na2

(
x2 + y2

λ
+ λ2z2

)
.
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a

F

F

b

Fig. 10.14 Schematic depiction of polymer chains in rubber in the undeformed state (a) and in
a uniaxially stretched sample (b). The external load changes the contours of the chains, thereby
increasing the Helmholtz free energy

The deformation free energy of the entire sample is given by the difference Fd =
F − F ′ averaged over the ν = M/N chains in the sample (hereM is the total number
of monomers)

Fd = 3νkBT

2Na2
[(

λ−1 − 1
) (〈x2〉 + 〈y2〉) + (

λ2 − 1
) 〈z2〉] .

The averages 〈x2〉, 〈y2〉, and 〈z2〉must be calculated in an undeformed sample, which
is isotropic so that 〈x2〉 = 〈y2〉 = 〈z2〉. Furthermore,

〈r2〉 = 〈x2〉 + 〈y2〉 + 〈z2〉 =
∫ ∞

0
r2w(r) 4πr2 dr = Na2

so that 〈x2〉 = 〈y2〉 = 〈z2〉 = Na2/3. Finally we obtain

Fd = νkBT

2

(
λ2 + 2

λ
− 3

)
,

which has a minimum at λ = 1: This represents the isotropic state where the entropy
of the polymer chains, which lack any orientational order on average, is largest.

The external stretching force needed to deform the rubber is equal to

F =
(

∂Fd

∂z

)

T,V

= 1

�

(
∂Fd

∂λ

)

T,V

= νkBT

�

(
λ − λ−2) ,
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where � is the length of the undeformed sample measured along the z-axis; the
dependence of F on λ is shown in Fig. 10.15. The isothermal Young’s modulus is
thus

Fig. 10.15 Dependence of the stretching force F in rubber on λ (solid line). The stretching force
is equal to 0 for λ = 1, corresponding to the undeformed sample. The sign of the force is negative
in compressed states where λ < 1 and positive in stretched states where λ > 1. The dashed line
represents the large-deformation limit where F(λ) is a linear function

ET = 1

A

(
∂F
∂λ

)

T V

= ν∗kBT
(
1 + 2

λ3

)
.

Here A is the area of the cross section perpendicular to the force in the undeformed
sample, whereas ν∗ = ν/A� is the volumetric density of chains. Unlike in solids,
the Young’s modulus of rubber increases with temperature. For λ � 1, F is a linear
function of λ and we obtain

ET ≈ MkBT

NV0
= 4.14 × 105 N/m2 .

Here V0 = A� is the volume of the sample.
The assumption that the distribution w(r) is Gaussian is valid only at moderate

deformations, i.e., for λ close to unity where the chains are not fully stretched-out.
The validity of this assumption is restricted by the condition λ〈r2〉1/2 	 Na, which
gives λ 	 √

N = 10. Lastly, in the above analysis, we neglected the fluctuations of
the crosslinks as well as the chain entanglements between crosslinks. Despite these
approximations, the predictions of the model agree with experiments rather well.

Problem 10.17.
The volume occupied by a polymer molecule in a solvent is quantified by the average
〈r2〉 ∝ N 2ρ, where r stands for the distance between its ends, N is the number of
monomers in the chain, and ρ is a characteristic exponent. In the so-called good
solvents, the flexibility of an ideal freely jointed chain is restricted primarily by
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the repulsive steric interaction between the monomers. Calculate the value of the
exponent ρ for this case!Hint:Assume that the energydensity due to steric interaction
is proportional to the square of monomer concentration, whereas the entropic term
in the Helmholtz free energy is the same as in the freely jointed chain!

In Problem 10.16 we found that for an ideally flexible freely jointed chain
〈r2〉 ∝ N , implying that ρ = 1/2. The part of the corresponding entropic Helmholtz
free energy that depends on chain length is proportional to 〈r2〉/N . The repulsive
steric interaction energy is proportional to the number of monomer pairs and can be
estimated by

Us ∼ v

2

(
N

Vp

)2

Vp .

The expression in the brackets represents the concentration of monomers, Vp ∝
〈r2〉d/2 is the volume occupied by a polymer in d dimensions, the constant v is
related to the strength of the steric interaction, and the factor 1/2 is there so as to
count each pair of monomers only once. (This is known as the mean-field Flory
theory.) After combining the elastic energy of the freely jointed chains and Us one
obtains

F ∝ c1
〈r2〉
N

+ c2
N 2

〈r2〉d/2
,

where c1 and c2 are positive constants. The two terms compete with each other:
Entropic elasticity favors short end-to-end distances, whereas steric repulsion is
smallest at large r . In equilibrium one has dF/d〈r2〉1/2 = 0, which gives

〈r2〉1/2 ∝ N 3/(d+2) .

We calculated the so-called Flory exponent ρF = 3/(d + 2) that is equal to 3/5 in
three dimensions, which is larger than the corresponding result for an ideal chain.
This is an expected result: The volume occupied by a chain of monomers that avoid
each other increases faster with increasing chain length than that of an ideally flexible
chain. It turns out that the exponent ρ is a universal quantity. The exact value of the
exponent for self-avoiding random trajectories is 0.588, which is quite close to the
above value and agrees with experiments. However, we stress that Flory’s simple
approach works because of an accidental cancelation of errors: By disregarding the
correlations along the chain, it overestimates the monomer–monomer repulsion but
the elastic free energy of the chains described by the ideal chain model is overesti-
mated too.

The exponent ρ also appears in Problems 8.10 and 8.11. Although the chains
considered in these two Problems are not ideally flexible, their behavior is similar to
that of flexible chains since ρ = 1/2; it is only the numerical factor in the expression
〈r2〉 ∝ N that is different. The reason for the difference between ρ and ρF is the
absence of the requirement that the different sections of the same chain avoid each
other.
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Problem 10.18.
A deoxyribonucleic acid (DNA) molecule can be represented by a long zipper, where
the interlocking teeth correspond to nucleotide pairs. In each nucleotide pair, the
energy of the open state exceeds that of the closed state byw > 0. A given nucleotide
pair can be in the open state only if all other pairs between that pair and the end
of the molecule are also open just like in a zipper. (Assume that the zipper can be
opened from one end only.) Calculate the average number of the open nucleotide
pairs in a DNA molecule at a given temperature T !

First we focus on a single isolated DNAmolecule consisting of n nucleotide pairs.
The state of the molecule is fully specified by the number of open nucleotide pairs
k, where 0 ≤ k ≤ n; the corresponding energy is Ek = kw. The partition function
reads

exp (−βF) =
n∑

k=0

exp (−βEk) = 1 − exp
( − (n + 1)βw

)

1 − exp (−βw)
,

where, in the last step, we evaluated a finite geometric sum. (We recognize that the
model is equivalent to a spin in an external magnetic field and, if n → ∞, also to the
quantum harmonic oscillator discussed in Problems 11.10 and 11.1, respectively.)
The average number of open pairs are related to the average energy by 〈k〉 = 〈E〉/w,
where

〈E〉 = dβF

dβ
= w

[
1

exp (βw) − 1
− n + 1

exp
(
(n + 1)βw

) − 1

]

.

In a very long chain with n → ∞ the second term is negligible and we obtain 〈k〉 =
1/

(
exp (βw) − 1

)
. Forw = 0.2 eVand T = 300K,wehave 〈k〉 = 4.4 × 10−4 	 1:

At room temperature, a DNA molecule is not expected to open up spontaneously.
Alternatively, the average number of open pairs 〈k〉 can be derived by considering

a system of N noninteracting DNA molecules, each containing n nucleotide pairs.
Because a given molecule can occupy any of the n + 1 energy levels Ek , this setup
can be regarded as a n + 1-level system, which may be viewed as a generalization of
the two-level system from Problem 10.10. In this case, the microstate of the system
is determined by specifying the number of open nucleotides for each molecule. The
energy of such a microstate is given by E = ∑n

k=0 NkEk , where Nk is the number
od DNA molecules with k nucleotides open. There exist

��(E) = N !
N0!N1! · · · Nn!

different microstates with the same energy E (where we assume that the molecules
are distinguishable), with N = ∑n

k=0 Nk . In equilibrium at fixed temperature, the
Helmholtz free energy must be minimized. By making use of the Boltzmann entropy
formula, we find that

F = E − kBT ln��(E) =
n∑

k=0

Nk
(
Ek + kBT ln Nk

) − NkBT ln N ,
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where we assumed that Nk � 1 and resorted to the Stirling formula. The equilibrium
(average) values of Nk are found by setting

(
∂F

∂Nk

)

T,N j 
=k

= 0 .

Note that before evaluating the derivatives, one of the Nks in the expression for F has
to be replaced by N j = N − ∑

k 
= j Nk to ensure that the total number of molecules
is conserved. We obtain

〈Nk〉
N

= exp (−βEk)∑n
i=0 exp (−βEi )

,

which represents the probability of finding amolecule with k nucleotides open. (Here
we rederived the canonical probability distribution.) By definition, the average energy
per molecule is given by

〈E〉 =
∑n

k=0 Ek〈Nk〉
N

=
∑n

k=0 Ek exp (−βEk)∑n
k=0 exp (−βEk)

.

The sum in the numerator is calculated by taking the derivative of the geometric
sum in the denominator with respect to the parameter −β, which leads to the same
expression for 〈E〉 as above.



Chapter 11
Quantum Canonical Ensemble

Problem 11.1.
Calculate the Helmholtz free energy, average energy, entropy, and the heat capacity
of a quantum harmonic oscillator!

The energy levels of the harmonic oscillator are equidistant,

E(n) =
(
n + 1

2

)
�ω ,

and nondegenerate. The partition function is a geometric series:

exp (−βF) =
∞∑
n=0

exp

(
−

(
n + 1

2

)
Tvib
T

)

= exp (−Tvib/2T )

1 − exp (−Tvib/T )

= 1

2 sinh (Tvib/2T )
,

where Tvib = �ω/kB is a characteristic temperature. TheHelmholtz free energy reads

F = �ω

[
1

2
+ T

Tvib
ln

(
1 − exp

(
−Tvib

T

))]
,

and the average energy is

〈E〉 = �ω

[
1

2
+ 1

exp (Tvib/T ) − 1

]
.

Here, the second term in the square brackets represents the average quantum number
〈n〉, i.e., the average occupation number.
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The entropy of the harmonic oscillator is

S = 〈E〉 − F

T
= kB

[
Tvib/T

exp (Tvib/T ) − 1
− ln

(
1 − exp

(
−Tvib

T

))]
,

and the heat capacity reads

C = kB

[
Tvib/2T

sinh(Tvib/2T )

]2
.

In Fig. 11.1, all of the above quantities are plotted against temperature.

Fig. 11.1 Quantum harmonic oscillator: Helmholtz free energy, average energy, entropy, and heat
capacity plotted as functions of temperature

Problem 11.2.
Explore the temperature dependence of the heat capacity of copper at high temper-
atures by treating lattice oscillations using the Einstein model where solid copper is
represented by independent harmonic oscillators at a fixed frequency of 4 × 1013/s!
What is the deviation of the heat capacity from its high-temperature limit at 500 K?
The kilomolar mass of copper is 64 kg/kmol.

At high temperatures, the partition function of a single one-dimensional quantum
harmonic oscillator (derived in Problem 11.1) can be expanded in Taylor series:

exp(−βF) = 1

2 sinh(TE/2T )
≈ T

TE

[
1 − 1

24

(
TE

T

)2

+ . . .

]
;
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here TE = �ωE/kB . This gives

〈E〉 ≈ −kBT
2 d

dT

[
− ln

T

TE
+ 1

24

(
TE

T

)2

+ . . .

]

= kBT + 1

12

kBT 2
E

T
+ . . .

In three dimensions, the number of independent oscillators per unit mass is
3NA/M = 3R/kBM , where M denotes the kilomolar mass, and the heat capacity is
given by

cV = 3R

M

[
1 − 1

12

(
TE

T

)2

+ . . .

]
.

At 500 K, the heat capacity of copper with TE = 304 K is smaller than the Dulong–
Petit result 3R/M ≈ 390 J/kgK by 12 J/kgK.

Problem 11.3.
The energy spectrum of a particle in the Morse potential

φ(r) = DE
[
1 − exp

(−α(r − rE )
)]2

is given by

E(n) =
[(

n + 1

2

)
− x

(
n + 1

2

)2
]

�ω ,

where ω = √
2DEα2/m is the frequency corresponding to the transition between

the ground state and the first excited state (m denotes the mass of the particle), and
x = �ω/4DE is the anharmonicity. Use this model to calculate the average vibra-
tional energy of a bond in the ammonia molecule at 4000 K, given that ω =
1.8 × 1014 s−1 and x = 0.01!

Anharmonicitymakes the spectrumnon-equidistant: The energydifferencebetween
two neighboring levels decreases with increasing n and drops to 0 at

nmax = 1 − 2x

2x
≈ 1

2x
;

herewe assumed that anharmonicity is small. The spectrum of theMorse anharmonic
oscillator is thus limited since the states with n > nmax are irrelevant in the present
context (Fig. 11.2).

At low temperatures when the oscillator is close to its ground state, 〈n〉 � nmax,
the effect of a weak anharmonicity is small. Therefore, the anharmonic factors in the
partition function exp(−βF) = ∑nmax

n=0 exp
(−βE(n)

)
can be expanded and the upper

bound of the integral pushed to infinity:



198 11 Quantum Canonical Ensemble

Fig. 11.2 Morse potential for α = 2/rE (solid line) and its harmonic approximation (dashed line).
Also shown are the energy levels for x = 0.05 (dotted lines); at this anharmonicity there exist 10
bound states

exp(−βF) ≈
∞∑
n=0

exp

(
−a

(
n + 1

2

))[
1 + xa

(
n + 1

2

)2
]

= exp
(
−a

2

) ∞∑
n=0

exp(−an)
[(

1 + xa

4

)
+ xan + xan2

]
,

where a = β�ω. The sums
∑∞

n=0 n exp(−an) and
∑∞

n=0 n
2 exp(−an) are evaluated

by differentiating the geometric series
∑∞

n=0 exp(−an) = exp a/(exp a − 1) with
respect to a, which gives exp a/(exp a − 1)2 and (exp a + 1) exp a/(exp a − 1)3,
respectively. By taking into account that x � 1 we have

βF ≈ − ln

(
exp(a/2)

exp a − 1

)
− xa

[
1

4
+ 1

exp a − 1
+ exp a + 1

(exp a − 1)2

]

and as 〈E〉 = dβF/dβ = �ωdβF/da we find that

〈E〉 =
[(

1

2
+ 1

exp a − 1

)

+x
1 + (5 + 8a) exp a − (5 − 8a) exp(2a) − exp(3a)

4(exp a − 1)3

]
�ω .

The first term in the brackets is the average energy of the harmonic oscillator (Prob-
lem 11.1), whereas the second one is the anharmonic correction.

The numerical result is 〈E〉 = 3.12 �ω = 5.89 × 10−20 J, which is rather close
to the energy �ω/2 and still quite far from the upper limit of the spectrum of bound
states lying slightly below 25 �ω. If the potential were harmonic, the corresponding
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result would read 〈E〉 = 2.95 �ω = 5.57 × 10−20 J. It is easy to see that the above
approach is equivalent to the one used in solving Problem 8.13.

Problem 11.4.
An electron is confined to a cubic cavity which acts as an infinite potential well.
Calculate the relative variance of the energy of the electron at 3 K! The side of the
cavity is 30 nm.

The energy spectrum of a particle in a three-dimensional infinite potential well is
given by

E(n1, n2, n3) = (
n21 + n22 + n23

) h2

8mL2
,

where m is the electron mass, L is the side of the cavity, and the quantum num-
bers n1, n2, n3 are all positive. The characteristic temperature Ttrans = h2/8mL2kB
is equal to 4.89 K, which suggests that at 3 K the sum in the partition function con-
verges rather rapidly. By taking into account the degeneracies of the ground state
and the first excited state (1 and 3, respectively), we have

exp (−βF) =
∞∑

n1,n2,n3=1

exp

(
− (

n21 + n22 + n23
) Ttrans

T

)

≈ exp

(
−3

Ttrans
T

)
+ 3 exp

(
−6

Ttrans
T

)
+ . . .

If we include one more term of the partition function, the result changes by a mere
0.017%.

The average energy reads 〈E〉= 3kBTtrans + 9kBTtrans exp (−3Ttrans/T ), whereas
the heat capacity is C = 27kB (Ttrans/T )2 exp (−3Ttrans/T ). The fluctuations of the
energy around the average are given by σE = √

kBT 2C = 3
√
3kBTtrans

exp (−3Ttrans/2T ) so that

σE

〈E〉 =
√
3 exp (−3Ttrans/2T )

1 + 3 exp (−3Ttrans/T )
= 0.15 .

Problem 11.5.
Calculate the average energy and the heat capacity of a quantum-mechanical rotator!

The energy levels of a rotator are given by

E( j) = j ( j + 1)
�
2

2I
,

where I is the moment of inertia and j is the angular momentum; the degener-
acy of the levels is (2 j + 1). Again one can introduce a characteristic temperature
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Trot = �
2/2I kB . The sum in the partition function

exp (−βF) =
∞∑
j=0

(2 j + 1) exp

(
− j ( j + 1)

Trot
T

)

cannot be calculated in a closed form. However, at low temperatures it suffices to
consider just a few largest terms of the sum—at least two, or else the system is locked
in a single state. Therefore

exp (−βF) ≈ 1 + 3 exp

(
−2

Trot
T

)

so that 〈E〉 ≈ 6kBTrot exp(−2Trot/T )/
[
1 + 3 exp (−2Trot/T )

]
and

C(T � Trot) ≈ 12kB

(
Trot
T

)2

exp

(
−2

Trot
T

)
.

Athigh temperatures, 〈 j〉 � 1 so that the sum in the partition function can be replaced
by an integral:

exp (−βF) ≈
∫ ∞

0
exp

(
−u

Trot
T

)
du = T

Trot
,

where u = j ( j + 1). Thus 〈E〉 = kBT and

C(T � Trot) = kB .

The asymptotic temperature dependence of the heat capacity requires more effort.
The above approximation of the partition function can be improved using the Euler–
MacLaurin formula

∞∑
n=0

f (n) =
∫ ∞

0
f (x)dx + 1

2
f (0) − 1

12
f ′(0) + 1

720
f ′′′(0)

− 1

30240
f (V )(0) + . . . ,

where in the present case f ( j) = (2 j + 1) exp
(− j ( j + 1)Trot/T

)
. To include cor-

rections of the order of O(1) and O(Trot/T ), we must retain the terms containing
f (0), f ′(0), and f ′′′(0). This leads to

exp (−βF) ≈ T

Trot
+ 1

3
+ Trot

15T
+ . . .
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so that 〈E〉 = kBT − kBTrot/3 − kBT 2
rot/45T + . . . and

C(T � Trot) = kB

[
1 + 1

45

(
Trot
T

)2

+ . . .

]
.

At high temperatures, the heat capacity of the rotator decreases, which indicates that
C is a non-monotonic function of temperature. This can be verified by carrying out
a full numerical calculation (Fig. 11.3).

0 0.5 1.5 2.51
T T/ rot
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C/kB
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Fig. 11.3 Heat capacity of a rotator (solid line) increases exponentially at low temperatures, reaches
a maximum at T/Trot = 0.807, and approaches the classical value of kB at high temperatures. The
low-temperature approximation agrees verywell with the exact result, whereas the high-temperature
approximation fares somewhat worse although it does indicate the existence of a maximum (dashed
lines)

Problem 11.6.
Calculate the heat capacities of orthohydrogen and parahydrogen at 20 K! The
angular momentum of the hydrogen molecule is 4.7 × 10−48 kgm2.

Since the characteristic temperature Trot = �
2/2I kB is 86 K, we are interested

in the low-temperature behavior of the two spin isomers of hydrogen. First, we
realize that upon particle exchange, the proton wavefunction must be antisymmetric
as a whole because protons are fermions. In parahydrogen, the spin part of the
wavefunction is a singlet and hence antisymmetric, and thus the spatial (i.e., the
rotator) part of the wavefunction must be symmetric. This means that j must be
even:

exp
(−βFpara

) = 1 + 5 exp

(
−6

Trot
T

)
+ . . .
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The heat capacity of parahydrogen is

Cpara = 180kB

(
Trot
T

)2

exp

(
−6

Trot
T

)
+ . . .

≈ 2.08 × 10−8kB = 2.87 × 10−31 J/K .

In orthohydrogen the spin part of the wavefunction is a triplet and hence symmetric,
whereas the spatial part is antisymmetricwith odd j . At low temperatures the partition
function is given by

exp (−βFortho) = 3

[
3 exp

(
−2

Trot
T

)
+ 7 exp

(
−12

Trot
T

)
+ . . .

]
,

where the factor of 3 in front of the square bracket is due to the threefold spin
degeneracy of the wavefunctions. The heat capacity is

Cortho = 700

3
kB

(
Trot
T

)2

exp

(
−10

Trot
T

)
+ . . .

≈ 9.13 × 10−16kB = 1.26 × 10−38 J/K .

Problem 11.7.
What is the equilibrium composition of the orthohydrogen/parahydrogen mixture at
35 K?

The concentrations of orthohydrogen and parahydrogen in an equilibrium mix-
ture are proportional to their respective partition functions, which are the sums of
the relative probabilities of finding a hydrogen molecule in a given rotator state.
Therefore

Northo

Npara
= 3

[
3 exp (−2Trot/T ) + 7 exp (−12Trot/T ) + . . .

]
1 + 5 exp (−6Trot/T ) + . . .

≈ 9 exp

(
−2

Trot
T

)
,

which is equal to 0.066 at 35 K, since Trot = 86 K. Thus the orthohydrogen fraction
is xortho = Northo/(Northo + Npara) = 0.062.

At high temperatures, the symmetric and the antisymmetric rotator states are
occupied with equal probabilities. The ratio of the spin isomer fractions then depends
only on the spin degeneracy and is equal to 3 : 1 so that the orthohydrogen share is
0.75 (Fig. 11.4).
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Fig. 11.4 Temperature dependence of the orthohydrogen fraction in an equilibrium mixture of
molecular hydrogen spin isomers (solid line). The simplest low-temperature approximation (dashed
line) agrees well with the exact result: At T/Trot = 0.3 the relative error is only slightly larger
than 1%

Problem 11.8.
The characteristic temperatures of the rotational and the vibrational states of a
nitrogen oxide (NO) molecule are 2.47 K and 2740 K, respectively. Calculate the
heat capacity of NO at 300 K! In the analysis, include the contribution of the first
excited electronic state which is 0.15 eV above the ground state; the degeneracy of
both states is 2.

As the characteristic rotator temperature is only 2.47 K, the heat capacity of
the rotational degrees of freedom at 300 K is equal to Crot = kB in agreement with
the solution to Problem 11.5. The heat capacity due to the translational motion in a
rarefied gas with N/V → 0 is Ctrans = 3kB/2 at all temperatures, whereas the heat
capacity due to the vibrational motion is marginal at room temperature since the cor-
responding characteristic temperature is much higher (Tvib = 2740 K). As shown in
Problem 11.1, for T � Tvib one hasCvib = kB (Tvib/T )2 exp (−Tvib/T ) = 0.009 kB .
The heat capacity due to the excited electronic state is also rather modest because
the relative occupancy of this state is rather small, amounting to exp (−�E/kBT )

= 0.003. The corresponding partition function reads exp (−βFel) ≈ 2 [1+
exp (−�E/kBT )

]
, and the resulting electronic heat capacity is equal to Cel =

kB (Tel/T )2 exp (−Tel/T ) = 0.102 kB , where Tel = �E/kB = 1740 K. In all, the
total heat capacity is

C = Ctrans + Crot + Cvib + Cel = 2.611 kB = 3.603 × 10−23 J/K .

Problem 11.9.
The energy spectrum of a planar rotator is given by E j = kBTrot j2

( j = 0, 1, 2, . . .), where Trot = 150 K. The ground state of the rotator is non-
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degenerate, whereas the degeneracy of all other states is 2. Calculate the change of
entropy after a system consisting of 1023 independent rotators is heated from 25 K
to 30 K! What is the result if the initial and the final temperature are 1500 K and
1505 K, respectively?

The entropy can be calculated from S = −dF/dT so that, as always, we first need
to evaluate the partition function to obtain the Helmholtz free energy F . As with the
three-dimensional rotator, the partition function cannot be calculated analytically,
but we can estimate it at low and high temperatures.
At low temperatures, T � Trot, we spell out a few terms of the rapidly converging
sum

exp (−βF) ∝
[
1 + 2 exp

(
−Trot

T

)
+ 2 exp

(
−4

Trot
T

)
+ . . .

]N

,

where N is the number of independent rotators. In the temperature range considered
here, it suffices to keep the first two terms in this sum and we find that

S = 2NkB

(
1 + Trot

T

)
exp

(
−Trot

T

)
.

The change of entropy upon heating from 25 K to 30 K is equal to 0.064 J/K.
On the other hand, at high temperatures where T � Trot, many rotational energy

levels are occupied and the sum in the partition function can be replaced by an
integral:

exp (−βF) =
[ ∞∑

j=0

2 exp
( − βkBTrot j

2
) − 1

]N

≈
[
2
∫ ∞

0
exp

( − βkBTrot j
2
)
d j

]N

=
(

π
T

Trot

)N/2

.

The changeof entropyuponheating uponheating from1500K to1505K is calculated
just like in the low-temperature limit and is equal to

�S = S(T ) − S(T ′) = NkB
2

ln

(
T

T ′

)
= 2.3 mJ/K.

The last result can also be obtained by a shortcut: In the high-temperature limit, the
rotators behave like classical systems. Thus one can apply the equipartition theorem
to the single rotational degree of freedom of each rotator to find that the average
energy is equal to 〈E〉 = NkBT/2 so that the corresponding heat capacity reads
C = NkB/2. At this point, we can resort to thermodynamics and obtain the change
of entropy using �S = ∫ T

T ′(C/T )dT , thereby immediately reproducing the above
result.
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Problem 11.10.
Calculate the magnetization of gadolinium sulfate octahydrate in a magnetic field
of flux density of 2 T at 4 K and at 40 K! The magnetic moment of the substance
is due solely to the gadolinium ions; their spin is 7/2 and the gyromagnetic ratio
equals e0/m (m denotes the mass of electron). The density of gadolinium sulfate
octahydrate Gd2(SO4)3 · 8H2O is equal to 3010 kg/m3; the kilomolar masses of
gadolinium, sulfur, and oxygen are 157, 32, and 16 kg/kmol, respectively.

The magnetic dipole moment of an atom with an angular momentum � j and the
projection of the angular momentum onto the direction of the external field � jz is
equal to pz = γ� jz , where γ = e0/m is the gyromagnetic ratio. The coupling with
an external magnetic field of flux density B results in 2 j + 1 equidistant levels of
energies

E( jz) = −γ� jz B ,

where jz = − j,− j + 1, . . . j − 1, j . The partition function is a geometric series

exp (−βF) =
j∑

jz=− j

exp (βγ� jz B) = sinh
(
βγ�B( j + 1/2)

)
sinh (βγ�B/2)

.

The average magnetic dipole moment of the atom is proportional to average energy:
〈pz〉 = −〈E〉/B. Thus

〈pz〉 = γ�

[(
j + 1

2

)
coth

(
( j + 1/2)Tm

T

)
− 1

2
coth

(
Tm
2T

)]
;

herewe introduced the characteristic temperatureTm = γ�B/kB related to the energy
difference of adjacent energy levels which is, in the present case, equal to 2.675 K.
〈pz〉 depends on the reduced temperature T/Tm : At low temperatures we have

〈pz〉 = γ�

[
j + (2 j + 1) exp

(
− (2 j + 1)Tm

T

)
− exp

(
−Tm

T

)]
,

whereas at high temperatures a Taylor expansion yields

〈pz〉 = γ� j ( j + 1)Tm
3T

.

As the characteristic temperature Tm is proportional to B, this result contains the
Curie law so that themagnetic susceptibilityχ ∝ 1/T (Fig. 11.5). This characteristic
temperature dependence of the susceptibility is also obtained in a gaseous dielectric
material (Problem 9.1), which is not surprising because at high temperatures the
energy difference of adjacent magnetic levels is negligible compared to kBT and the
discreteness of the spectrum is unimportant.
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Fig. 11.5 Average magnetic dipole moment of an atom of angular momentum j = 1 in a magnetic
field as a function of reduced temperature (solid line) plotted together with the corresponding low-
and high-temperature approximations (dashed lines)

Magnetization is the volumetric density of the magnetic dipole moment:
M = N 〈pz〉/V . The number density of the gadolinium ions is calculated from
the density and kilomolar mass; note that each gadolinium sulfate molecule con-
tains two gadolinium atoms. At 4 K the magnetization of Gd2(SO4)3 · 8H2O is
2.24 × 105 A/m, whereas at 40 K it is 3.15 × 104 A/m.

Problem 11.11.
Calculate the magnetic heat capacity of gadolinium sulfate octahydrate considered
in Problem 11.10 in a field of 2 T at 4 K and 40 K!

By differentiating the average energy derived in Problem 11.10, we find that the
heat capacity of a single spin

C = kB

(
Tm
T

)2 [ 1

4
sinh−2

(
Tm
2T

)

−
(
j + 1

2

)2

sinh−2

(
( j + 1/2)Tm

T

)]
.

It is easy to see that C tends to 0 both at absolute zero and at very high temperatures,
and hence we conclude that it must be a non-monotonic function of temperature.
A more detailed analysis reveals that with increasing j , the height of the peak of
the heat capacity approaches kB and the width of the peak increases (Fig. 11.6).
Such behavior is understandable since by letting j → ∞ we approach the classical
limit; note that themagnetic energy is formally equivalent to the gravitational energy,
which gives rise to a heat capacity of kB (see Problem 8.1).
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Fig. 11.6 Magnetic heat capacity per atom as a function of reduced temperature, plotted for atoms
with j = 1, 5, and 15. The higher the angular momentum, the higher and the broader the peak of
C(T )

We also notice that the heat capacity of electric dipoles (Problem 9.2), treated
within the framework of classical physics, is finite at low temperatures and does
not drop to 0 like in magnetic dipoles. This qualitative difference originates in the
discreteness of the energy levels which is a consequence of the quantum nature of the
magnetic system: Upon heating, the internal energy of the system can only increase
if the population of the first excited level is significant. Such a restriction is absent
in systems with a continuous energy spectrum, e.g., in electric dipoles. On the other
hand, the high-temperature limits of the classical and quantum system agree with
each other. In both cases, one hasC → 0 because at T → ∞ all states in phase space
are equally populated.

The magnetic specific heat is now given by cH = 2NAC/M , where the factor of
2 accounts for the two gadolinium atoms in each molecule of gadolinium sulfate
and M = 746 kg/kmol is the kilomolar mass of gadolinium sulfate octahydrate. In
a magnetic field of 2 T, cH = 18.3 J/kgK at 4 K and 0.51 J/kgK at 40 K.

Problem 11.12.
In the Isingmodel of a ferromagnet the interaction between atomicmagneticmoments
is described by the Hamiltonian

H = −J
∑

i, j neighbors

si s j ,

where J denotes the exchange integral and si = ±1/2. Calculate the temperature of
the ferromagnetic–paramagnetic transition by using the mean-field approximation!
The coordination number of the atoms is equal to z.
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In the mean-field approximation, the Ising Hamiltonian is replaced by

H = −γ�

∑
i

si 〈B〉 ,

where 〈B〉 is the magnetic flux density created by the neighboring atoms at the site
of atom i . From the comparison of the interaction energies involving the spin at site
i in the original and in the substitute Hamiltonian we find that

〈B〉 = J

γ�

z∑
j=1

〈s j 〉 = z J

γ�
〈s〉 = z J

4p2B
〈pz〉 ,

where z is the coordination number and pB = e0�/2m is the Bohr magneton. Now
we take the expression for the averagemagnetic dipolemoment of an isolated atom in
an external magnetic field, which for atoms with angular momentum 1/2 simplifies
to 〈pz〉 = pB tanh (pB B/kBT ) (Problem 11.10), and we replace B with the mean
field 〈B〉. This leads to the equation of state

〈pz〉
pB

= tanh

(
z J

4kBT

〈pz〉
pB

)

or

M = tanh
M
T ,

whereM = 〈pz〉/pB is the reducedmagnetization and T = 4kBT/z J is the reduced
temperature.

Close to phase transition which is at T = 1, the equilibrium spontaneous mag-
netization is small and can be calculated by expanding tanh(M/T ) in a series. This
yields

M = M
T − M3

3T 3
+ . . .

with solutionsM = 0 (paramagnetic phase) andM = ±√
3T 2(1 − T ) (ferromag-

netic phase); the nontrivial solutions exist only for T < 1. Close to the phase tran-
sition, the temperature dependence of the magnetization in the ferromagnetic phase
differs from the spontaneous polarization in a ferroelectric material obtained within
the local-field approximation (Problem 9.4) only by a numerical factor; the corre-
sponding critical exponents are equal. At low temperatures where the reduced mag-
netization barely differs from 1, we haveM(T ) ≈ 1 − 2 exp (−2/T ). This approx-
imation agrees with the exact numerical solution rather well, as does that obtained
close to the transition (Fig. 11.7).
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Fig. 11.7 Ising model of the ferromagnetic–paramagnetic transition in the mean-field approxima-
tion: Exact temperature dependence of the reduced spontaneous magnetization (solid line) shown
together with the approximations valid at low temperatures and close to the transition (dashed lines)

By recalling that the two spin states are separated by an energy gap of width
2pB〈B〉, it is easy to understand why the temperature dependence of the spontaneous
magnetization of the ferromagnetic phase is so weak close to absolute zero. On the
other hand, the energy of an electric dipole in the ferroelectric phase (Problem 9.4)
is not quantized, which leads to a more pronounced temperature dependence of the
spontaneous electric polarization in the model ferroelectric material at low temper-
atures.

We finally note that in the mean-field approximation, there is no qualitative dif-
ference between one-, two-, and three-dimensional systems; the only parameter that
changes is the coordination number. However, Problem 10.11 demonstrates that in
the Ising model, the dimensionality of the system actually plays a key role in the
very existence of a phase transition. We conclude that the concept of the mean-field
concept is of limited applicability.

Problem 11.13.
By considering themean-field approximation of the Isingmodel, explore the behavior
of the heat capacity close to the ferromagnetic–paramagnetic transition!

We assume that the magnetic field created at the site of the reference atom by the
neighboring atoms 〈B〉 is weak enough so that we can estimate the average magnetic
dipole moment of the reference atom using the high-temperature approximation
(Problem 11.10). For j = 1/2 and γ = e0/m, the average magnetic moment reads

〈pz〉 = p2B〈B〉
kBT

.
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Here pB = e0�/2m is the Bohr magneton. The average energy of this magnetic
moment is

〈E〉 = −1

2
〈pz〉〈B〉 = − p2B〈B〉2

2kBT
,

where the factor 1/2 is due to the pairwise nature of the interactions. Problem 11.12
shows that 〈B〉 = (z J/4pB)M, where M is the reduced spontaneous magneti-
zation. Just below the phase transition at reduced temperature T = 1 we have
M ≈ √

3T 2(1 − T ), whereas above the transitionM = 0. This gives

〈E〉 =
{−3kBTcT (1 − T )/2, T < 1
0, T > 1

;

Tc = z J/4kB is the critical temperature. In the ferromagnetic phase close to T = 1
the magnetic heat capacity of an atom increases linearly with temperature, whereas
in the paramagnetic phase it is 0:

C =
{
3kB(T − 1/2), T < 1
0, T > 1

.

Hence, the jump of the heat capacity at the transition equals 3kB/2 per atom. It is not
surprising that a similar behavior is seen at the ferroelectric–paraelectric transition
(Problem 9.6).

Problem 11.14.
Calculate the heat capacity of a one-dimensional Isingmodel with periodic boundary
conditions! Use the transfer matrix approach!

The partition function

exp (−βF) =
∑
{si }

exp

(
β J

N∑
i=1

si si+1

)
,

where {si } denotes the spin configuration of the entire system, contains terms of the

form exp (β Js1s2) exp (β Js2s3) . . . exp (β JsN s1). If we assign a spinor |si 〉 =
[
1
0

]

to spin si = +1/2 and a spinor |si 〉 =
[
0
1

]
to spin si = −1/2, each of the factors

exp (β Jsi si+1) can be regarded as a matrix element 〈si |P|si+1〉, where

P =
[

exp (β J/4) exp (−β J/4)
exp (−β J/4) exp (β J/4)

]
.

The partition function can then be rewritten as

exp (−βF) =
∑

s1=±1/2

∑
s2=±1/2

. . .
∑

sN=±1/2

〈s1|P|s2〉〈s2|P|s3〉 . . . 〈sN |P|s1〉 .
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Since the states |si 〉 =
[
1
0

]
and |si 〉 =

[
0
1

]
span a complete system, we have∑

si
|si 〉〈si | = 1 and hence

exp (−βF) =
∑

s1=±1/2

〈s1|PN |s1〉 = trPN .

The trace of the PN matrix is easy to calculate if PN is diagonalized first; we find
that the eigenvalues of P are 2 cosh(β J/4) and 2 sinh(β J/4). Since cosh(β J/4) >

sinh(β J/4) for any value of β J , in the thermodynamic limit N → ∞ we obtain

exp (−βF) =
[
2 cosh

(
β J

4

)]N

,

which formally coincides with the partition function for N independent atoms with
j = 1/2 in an external magnetic field (Problem 11.10) if J is mapped into 2γ�B.
As isolated magnetic moments in an external field are known not to give rise to a
ferromagnetic phase, we conclude that no spontaneous order is predicted by the one-
dimensional Ising model either. As shown in Problem 10.11, such order can occur
only at absolute zero.

In agreement with Problems 11.10 and 11.11 the average energy of a one-
dimensional Ising model is equal to 〈E〉 = −(N J/4) tanh (J/4kBT ) and the cor-
responding heat capacity reads

C = NkB

(
J

4kBT

)2

cosh−2

(
J

4kBT

)
.

Problem 11.15.
Discuss the conformational part of the partition function of a very long polyethy-
lene chain! Calculate the average conformational energy per bond at 300 K, given
that the energy of the trans state is lower than the energy of both gauche states
by 0.025 eV! Explore the high- and the low-temperature behavior of the average
energy!

The nature of the conformations trans (t), gauche+ (g+), and gauche− (g−)
in an alkane chain is discussed in Problem 8.12, where a short pentane chain is
considered. Here, we turn to a non-branched long chain consisting of N + 1 carbon
atoms containing N bonds, with N − 2 neighboring-atom quartets. The state of the i-
th quartet is denoted byϕi , and the energy difference between the gauche and the trans
state is w. Recall that the bonding sequences g+g− and g−g+ for the neighboring
quartets are prohibited and are thus assigned an infinite energy. The Hamiltonian of
such a chain reads

H =
N−1∑
i=2

HL(ϕi ) +
N−1∑
i=3

HN (ϕi−1,ϕi ) ,
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where the local term

HL(ϕi ) =
{
0, ϕi = t
w, ϕi = g±

represents the conformational energy of a given quartet, whereas the nonlocal term

HN (ϕi−1,ϕi ) =
{∞, {ϕi−1,ϕi } = {g±, g∓}
0, {ϕi−1,ϕi } = {g±, g∓}

ensures that the {g±, g∓} bonding sequences do not appear in neighboring quartets.
(The adjective “non-local” refers to the fact that unlike the HL term, the HN term
depends on the states of two neighboring quartets.) H is now recast as

H = HL(ϕ2) +
N−1∑
i=3

HP(ϕi−1,ϕi )

with HP(ϕi−1,ϕi ) = HL(ϕi ) + HN (ϕi−1,ϕi ). We notice that the Hamiltonian is
similar to that of the Ising model in Problem 11.14 except that it features quartets
instead of spins and that the quartets can be in one of the three possible states. Hence
the partition function reads

exp (−βF) =
∑
ϕ2

. . .
∑
ϕN−1

exp
( − βHL(ϕ2)

)

×
N−1∏
i=3

exp
( − βHP(ϕi−1,ϕi )

)
.

Like in the transfermatrix approach of Problem11.14, the statesϕi can be represented
by

|t〉 =
⎡
⎣ 1
0
0

⎤
⎦ , |g+〉 =

⎡
⎣0
1
0

⎤
⎦ , and |g−〉 =

⎡
⎣0
0
1

⎤
⎦ .

Now the factors exp
(−βHP(ϕi−1,ϕi )

)
can be regarded as matrix elements

〈ϕi−1|P|ϕi 〉 where

P =
⎡
⎣1 u u
1 u 0
1 0 u

⎤
⎦

with u = exp (−βw), and the partition function can be rewritten as

exp (−βF) =
∑
ϕ2

. . .
∑
ϕN−1

exp
( − βHL(ϕ2)

)

×〈ϕ2|P|ϕ3〉 . . . 〈ϕN−2|P|ϕN−1〉 .
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[Wenote that unlike in Problem11.14,P is not symmetricwhich is due to the presence
of the local term HL(ϕi ). In the Ising spin chain, such a term would appear if the
chain were exposed to an external magnetic field, which would break the symmetry
of the spin states.] The states |t〉, |g+〉 in |g−〉 span a complete system; therefore∑

ϕi
|ϕi 〉〈ϕi | = 1, and thus

exp (−βF) =
∑
ϕ2

∑
ϕN−1

exp
( − βHL(ϕ2)

) 〈ϕ2|PN−3|ϕN−1〉 .

The evaluation of the sums over the terminal quartets |ϕ2〉 and |ϕN−1〉 can be avoided
by assuming that there exists an additional carbon atom at either end of the chain and
by requiring that the thus introduced additional quartets are both in the trans state;
this is just a mathematical device. This does not increase the phase space and does
not alter the partition function either (recall that the conformational energy of the
trans states is zero). Thus the partition function is recast as

exp (−βF) = 〈t |PN−1|t〉 .

To facilitate the evaluation of the matrix PN−1, we first diagonalize it. We have
P = ADA−1, where D is a diagonal matrix with eigenvalues λ1, λ2, and λ3, whereas
A is the transition matrix. Furthermore, PN−1 = (ADA−1)N−1 = ADN−1A−1 and

DN−1 =
⎡
⎣λN−1

1 0 0
0 λN−1

2 0
0 0 λN−1

3

⎤
⎦ ,

yielding

exp (−βF) = A11A
−1
11 λN−1

1 + A12A
−1
21 λN−1

2 + A13A
−1
31 λN−1

3 .

[Here A−1
i j denotes (A−1)i j rather than 1/Ai j .] Assume now that λ1 > λ2,λ3.

In this case, the last two terms can be neglected in a long chain with N � 1,
and after approximating N − 1 by N we are left with exp (−βF) ≈ A11A

−1
11 λN

1 .
Now we need to find the eigenvalues of the matrix P. By requiring that det(P −
λI) = 0 and solving the ensuing cubic equation for λ, we obtain λ1,2 = [1 + u ±√

(1 + u)2 + 4u]/2 and λ3 = u. Finally, the Helmholtz free energy of the chain is
given by F = −kBT [ln (A11A

−1
11 ) + N ln λ1(β)] where

λ1(β) = 1

2

{
1 + exp (−βw) + √[1 + exp (−βw)]2 + 4 exp (−βw)

}
.

The average conformational energy per bond is equal to
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〈E〉
N

= 1

N

dβF

dβ
= − 1

λ1(β)

dλ1(β)

dβ

= wu
1 + (3 + u)

[
(1 + u)2 + 4u

]−1/2

1 + u + [(1 + u)2 + 4u]1/2 ,

which amounts to 0.33w ≈ 8.3 meV at 300 K.
In the end, we explore the low- and high-temperature behavior of the chain. At

very low temperatures we obtain 〈E〉/N ≈ 2w exp(−w/kBT ): Most of the quartets
are in the trans statewith zero energy, and the first excited state has an energy ofw and
a degeneracy of 2. On the other hand, at high temperatures we have 〈E〉/N → w/2.
One may naively expect that 〈E〉/N → 2w/3, since each of the quartets can be in
any of the three different states which should be equally populated at high tempera-
tures. However, we must not forget that two consecutive quartet bonding sequences
(g+g− and g−g+) are not allowed. The complete temperature dependence of 〈E〉/N
is plotted in Fig. 11.8.
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Fig. 11.8 Average conformational energy originating from bonds between the carbon atoms in
a polyethylene chain (solid line), together with its low-temperature approximation 〈E〉/Nw ≈
2 exp(−w/kBT ) (dashed line)

Problem 11.16.
Analyze the ferromagnetic–paramagnetic transition in the one-dimensional Ising
model with periodic boundary conditions using the renormalization group approach!

We consider 2N spins s1, s2, . . . s2N which can take values ±1/2. The periodic
boundary conditions require that the spin s2N is the left neighbor of the spin s1. The
partition function is equal to

exp
(−βFN (JN )

) =
∑
{si }

exp

(
β JN

2N∑
i=1

si si+1

)
,
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where {si } denotes a summation over all spin configurations. Here all spin–spin
interactions are included only once; we emphasize that the partition function depends
on the exchange integral JN . Now we evaluate the contribution of spin s2 to the
partition function. This spin appears in two terms of the Hamiltonian: JN (s1s2 +
s2s3) = J (s1 + s3)s2. We obtain

exp
(−βFN (JN )

) =
∑
{si ,s2}

exp

(
β JN

2N∑
i=3

si si+1

)

×
∑

s2=±1/2

exp
(
β JN (s1 + s3)s2

)
︸ ︷︷ ︸
2 cosh

(
β JN (s1 + s3)/2

)
.

If the contribution of spin s2 to the partition function is written as

2 cosh

(
β JN (s1 + s3)

2

)
=

{
2 cosh (β JN/2) , s1s3 = +1/4
2, s1s3 = −1/4

,

we see that it only depends on the product of spins s1 and s3 and that it can be regarded
as a term in the Ising Hamiltonian that couples spins s1 and s3:

2 cosh

(
β JN (s1 + s3)

2

)
= DN−1 exp (β JN−1s1s3) .

Here DN−1 = 2
√
cosh (β JN/2) is a factor added to the normalization constant of

the partition function, and

JN−1 = 4

β
ln

√
cosh

(
β JN
2

)

is the effective exchange integral between spins s1 and s3. Now we use the same
procedure for all remaining even-labeled spins to find that

exp
(−βFN (JN )

) = D2N−1

N−1 exp
(−βFN−1(JN−1)

)
.

In this manner, we transformed the sum over all configurations of the initial 2N

spins into a sum over 2N−1 odd-labeled spins, with the spin–spin exchange integral
of JN−1 instead of JN . This spin decimation procedure can be repeated to remove
spins s3, s7, s11, … from the partition function so as to obtain the effective exchange
integral between spins s1 and s5, s5 and s9, …, which evidently obeys the relation
JN−2 = (4/β) ln

√
cosh(β JN−1/2) (Fig. 11.9).
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Fig. 11.9 Decimation of spins on a one-dimensional lattice. The original exchange integral between
neighboring spins is JN , the effective exchange integral between next-nearest neighbors is JN−1,
that between next-next-nearest neighbors is JN−2…At the critical point, the exchange integrals
between a given spin and any other spin in the chain must be the same

Since the phase transition from the ferromagnetic to the paramagnetic phase is con-
tinuous, it is accompanied by strong fluctuations without a characteristic correlation
length. This means that at transition temperature, the exchange integral between any
two spins in the system is equally strong. In other words, the phase transition cor-
responds to the fixed point in the recursive scheme JN → JN−1 → JN−2 → . . . By
rewriting the relation between JN−1 and JN as exp (β JN−1/4) = √

cosh (β JN/2) or

exp

(
β JN−1

2

)
= 1

2

[
exp

(
β JN
2

)
+ exp

(
−β JN

2

)]
< exp

(
β JN
2

)
,

we see that JN−1 < JN so that the effective exchange integral decreases with each
step of the iteration. This is equivalent to saying that in each step, the characteristic
temperature associated with the effective exchange integral increases (Fig. 11.10).

Fig. 11.10 Renormalization group flow: In each decimation step, the effective exchange integral
is decreased, which can be interpreted as an increase of the effective temperature. The fixed points
are T = 0 (repulsive) and T → ∞ (attractive)

Now we look for the critical point where one has Ji = Ji−1 = J ∗, or

β J ∗ = 2 ln cosh

(
β J ∗

2

)
.

This equation has two solutions: The first one is β J ∗ = 0, which corresponds to the
phase transition at T → ∞ and thus disagrees with the usual notion of a critical
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point, whereas the second one is β J ∗ = ∞ or T = 0. This solution tells us that in
our system the ferromagnetic–paramagnetic transition phase takes place at absolute
zero. Consequently, there exists no ferromagnetic order in one dimension at any
T > 0, which agrees with the results of Problem 10.11 as well as with the van Hove
theorem mentioned in Problem 9.19.

Problem 11.17.
The interaction between nearest-neighbor spins in a linear chain consisting of N
spins is modeled by the Ising Hamiltonian

H = −J
N−1∑
i=1

si si+1,

where J is the exchange integral and si = ±1/2. Calculate the average value of
〈s1sN 〉 for N = 3 and N = 12, assuming J/kBT = 4!

The quantity 〈s1sN 〉 can be used to quantify the correlations of spin orientation
along the chain. For N = 3, all 23 = 8 microstates of the spin chain can be listed
explicitly, and 〈s1s3〉 can then be calculated using the definition of a thermal average.
For N = 12 (and any arbitrarily large N ), this approach fails because the phase space
consisting of 2N microstates is too large. Instead we can write

〈s1sN 〉 = 1

4
P+ +

(
−1

4

)
P− ,

where P+ and P− denote the probabilities that the terminal spins s1 and sN be
parallel or antiparallel, respectively. The probability that two neighboring spins are
antiparallel is given by

p = exp(−β J/4)

exp(−β J/4) + exp(β J/4)
;

the probability that they are parallel is 1 − p. The terminal spins are thus parallel
only if the chain contains an even number (k) of antiparallel spin pairs in the chain
(and, inevitably, N − k − 1 parallel spin pairs). The corresponding probability is
given by

P+ =
∑
k even

(N − 1)!
k!(N − k − 1)! p

k(1 − p)N−k−1.

Analogously, an odd number of antiparallel neigboring pairs yields antiparallel ter-
minal spins, and the expression for the corresponding probability P− differs from
P+ only in the sum running over odd rather than even values of k. By combining the
above expressions and using the binomial theorem we obtain

〈s1sN 〉 = 1

4

N∑
k=1

(N − 1)!
k!(N − k − 1)! p

k(1 − p)N−k−1(−1)k = 1

4
(1 − 2p)N−1
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and upon inserting the result for p we finally find

〈s1sN 〉 = 1

4

[
tanh

(
β J

4

)]N−1

.

For N = 3 we have 〈s1s3〉 = 0.145 whereas for N = 12, 〈s1s12〉 = 0.0125. We see
that the correlations of spin orientation weaken with increasing spin-to-spin distance
since | tanh (β J/4)| < 1.

The sameapproach canbeused to studydirectional correlations in a linear polymer
chain where the angle between the consecutive monomers can be either 0 or π, the
latter carrying an excess energy of φ0. Let the unit vector ui point from the tail to
the head of the i-th monomer. Using the reasoning developed for the Ising chain,
the average 〈u1 · uk〉 is equal to (1 − 2p)k−1 where p = 1/[1 + exp (βφ0)] is the
probability that a given bond is bent; note that p ≤ 1/2. The above result can be used
to calculate, e.g., the persistence length of the polymer (defined in Problem 8.10)

�p = a lim
N→∞

N∑
k=1

〈u1 · uk〉 = a lim
N→∞

1 − (1 − 2p)N

2p

= a

2p
= a

2

[
1 + exp (βφ0)

]
,

where a is the monomer length. Limiting cases: For βφ0 → ∞ (low temperatures
or a very stiff polymer) �p diverges, whereas for βφ0 → 0 (high temperatures or a
very flexible polymer) the orientational correlations between the monomers vanish
and �p → a.



Chapter 12
Grand Canonical Ensemble

Problem 12.1.
Examine the temperature dependence of the spin-wave (magnon) heat capacity in
a ferromagnet close to absolute zero! The dispersion relation for magnons reads
ω = aq2.

The elementary excitations in a ferromagnet can be viewed as a system of inde-
pendent harmonic oscillators. The number of excitation quanta is not conserved
since they are virtual rather than real particles; consequently, their chemical poten-
tial is 0. In this case the occupation number of a given oscillator is equal to[
exp

(
�ω/kB T

)− 1
]−1

. Within the Debye model, the average energy of excitations
reads

〈E〉 =
∫ ωmax

0

[
1

exp
(
�ω/kB T

)− 1
+ 1

2

]

�ω dN (ω) .

(Note that the term �ω/2 in the integrand representing the zero-point energy can
well be omitted as it does not contribute to heat capacity.) The analysis can be easily
generalized to a dispersion relation of the form ω = aqn so as to apply to other kinds
of excitations. The number of oscillators in the frequency interval betweenω − dω/2
and ω + dω/2 for a single polarization of waves is given by

dN (ω) = V

(2π)3
4πq2dq = V

2π2na

(ω

a

)3/n−1
dω ,

so that the heat capacity becomes

C = d〈E〉
dT

= V �
2

2π2nkB T 2a3/n

∫ ωmax

0

ω3/n+1 exp (�ω/kB T ) dω
[
exp (�ω/kB T ) − 1

]2

= kB
V

2π2n

(
kB T

�a

)3/n ∫ umax

0

u3/n+1 exp u du

(exp u − 1)2
,
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with u = �ω/kB T . In theDebyemodel, the upper bound of the integral is determined
by the requirement that the total number of oscillators be equal to the number of
single-particle degrees of freedom which is proportional to the number of atoms in
the system. At low temperatures, however, this requirement is inessential because the
integral converges rapidly and onlyweakly depends on the upper bound umax � 1.As
a result, the temperature dependence of the heat capacity originates in the prefactor
T 3/n which gives cV ∝ T 3/2 for magnons with n = 2, whereas for phonons (i.e.,
sound waves) with n = 1 we have cV ∝ T 3. Note that the exponent also depends on
the dimensionality of the system: In two-dimensional systems one has cV ∝ T 2/n

and in one-dimensional ones cV ∝ T 1/n .

Problem 12.2.
Explore the behavior of the heat capacity of a solid at high temperatures! Analyze
its deviation from the Dulong–Petit high-temperature limit for iron at 300 ◦C! The
kilomolar mass of iron is 55.8 kg, its density is 7800 kg/m3, and the Young’s modulus
is 1.1 × 1011 N/m2.

We assume that all three polarizations of sound propagate at the same velocity
denoted by c. According to Problem 12.1, the average energy of phonons in a solid
is given by

〈E〉 = 3V �

2π2c3

∫ ωmax

0

ω3 dω

exp(�ω/kB T ) − 1
= 3V (kB T )4

2π2c3�3

∫ umax

0

u3 du

exp u − 1
,

where u = �ω/kB T . The upper bound of the spectrum is determined by the condition

3N = 3V

2π2c3

∫ ωmax

0
ω2 dω = V ω3

max

2π2c3
.

This gives ωmax = 2πc (3N/4πV )1/3 and umax = �ωmax/kB T = TD/T ; here TD =
�ωmax/kB is the Debye temperature. At high temperatures, one has umax � 1 and
〈E〉 can be calculated by expanding the integrand into a series:

〈E〉 ≈ 9NkB T 4

T 3
D

∫ umax

0

(
u2 − u3

2
+ u4

12
+ . . .

)
du

= 3NkB T

[

1 − 3

8

TD

T
+ 1

20

(
TD

T

)2

+ . . .

]

.

Thus the heat capacity of phonons is equal to

C = 3NkB

[

1 − 1

20

(
TD

T

)2

+ . . .

]
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which agrees with the exact value fairly well; at T/TD = 0.5, e.g., the difference is
about 3% (Fig. 12.1).

From the data for iron we find that c = √
E/ρ = 3755 m/s and TD = 492 K:

At 300 ◦C the heat capacity is equal to 428.8 J/kgK, which is 3.7% less than the
high-temperature limit of 445.2 J/kgK.

0 0.5 1.5 21
0

2

3

1

T T/ D

C Nk/ B

Fig. 12.1 Heat capacity of a solid predicted by the Debye model (solid line), together with the
low-temperature approximation (12π4NkB/5)(T/TD)3 and the high-temperature approximation
3NkB

[
1 − (TD/T )2/20

]
(dashed lines)

Problem 12.3.
Up to what temperature must one heat a one-kilogram copper sample for the average
number of phonons to double if its initial temperature is 300 K? Use the Einstein
model of independent harmonic oscillators of frequency of 4 × 1013 s−1! Also cal-
culate the change of the entropy of lattice vibrations upon heating! The kilomolar
mass of copper is 64 kg/kmol.

The energy of a single harmonic oscillatorwith n phonons is (n + 1/2)�ωE , where
ωE is the oscillator frequency. The partition function of the oscillator is a geometric
series:

exp (−βF) =
∞∑

n=0

exp

(
−β

(
n + 1

2

)
�ωE

)
= exp (−β�ωE/2)

1 − exp (−β�ωE )
.

The average number of phonons in a given oscillator is

〈n〉 = dβF

dβ�ωE
− 1

2
= 1

exp (β�ωE ) − 1
.
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By requiring that 〈n〉(T ) = 2〈n〉(T ′), i.e., that

1

exp (β�ωE ) − 1
= 2

exp (β′�ωE ) − 1
,

where β′ = 1/kB T ′ and T ′ = 300 K, one concludes that the average phonon number
is doubled at a temperature

T = �ωE

kB

[
ln

(
exp (β′

�ωE ) + 1

2

)]−1

= 482 K .

The entropy of lattice vibrations is equal to S = (〈E〉 − F
)
/T , where

〈E〉 = dβF

dβ
=
(

〈n〉 + 1

2

)
�ωE

is the average energy of a single oscillator. Finally we obtain

S(T ) = kB

[
�ωE/kB T

exp (�ωE/kB T ) − 1
− ln

(
1 − exp

(
−�ωE

kB T

))]
.

This result applies to a single degree of freedom. In a crystal there are 3N degrees
of freedom, where N = m NA/M is the total number of atoms, m is the mass of
the sample, and M is the kilomolar mass of copper. The change of entropy of the
one-kilogram copper sample upon heating from T ′ to T is then equal to

3m NA

M

[
S(T ) − S(T ′)

] = 174 J/K .

Problem 12.4.
A one-dimensional solid can be represented by a linear chain consisting of N atoms,
with nearest neighbors connected by springs. The eigenfrequencies of longitudinal
waves propagating along such a chain are given by

ωq = ω0

√
2(1 − cos qa) ,

with q = 2πn/Na, where n is an integer between −N/2 and N/2, and a = 1 nm
is the distance between nearest-neighbor atoms. What is the heat capacity of such
a chain at high temperatures? Also examine its temperature dependence close to
absolute zero and estimate its value at 1 K for ω0 = 1012 s−1!

Since the number of atoms is rather large, the solid can be viewed as a continuum
and q can be treated as a continuous variable. The heat capacity of the chain is
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calculated from average energy

〈E〉 =
∫ ω(π/a)

0

�ω

exp(β�ω) − 1
g(ω) dω

=
∫ π/a

−π/a

�ω(q)

exp
(
β�ω(q)

)− 1

Na

2π
dq ,

where g(ω) denotes the density of states.We took into account that in one dimension,
the number of independent harmonic oscillators in a wavevector interval dq is equal
to (Na/2π) dq and that there exists only one polarization of the longitudinal waves.

At high temperatures we have exp (β�ω) ≈ 1 + β�ω so that

〈E〉 =
∫ π/a

0

1

β

Na

π
dq = NkB T .

Hence the specific heat is equal to cV = N−1 (∂〈E〉/∂T )V = kB , which completely
agrees with the classical picture of lattice vibrations.

On the other hand, at low temperatures only the long-wave modes close to q = 0
are excited. For these states we can write cos (qa) ≈ 1 − q2a2/2, which yields an
approximately linear dependence ofω(q):ω(q) ≈ ω0|qa| (Fig. 12.2).We nowobtain

Fig. 12.2 Dispersion relation for waves in a one-dimensional solid (solid line) and the linear
dependence used to calculate the heat capacity at low temperatures (dashed line)

〈E〉 =
∫ π/a

0

�ω0qa

exp (β�ω0qa) − 1

Na

π
dq = N

π�ω0β2

∫ πβ�ω0

0

u du

exp u − 1
.
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At low temperatures, the upper bound of the integral can be pushed to infinity. From
the tables of integrals we find that

∫∞
0 [exp u − 1]−1u du = π2/6. Finally, at 1 K we

have

cV = πk2
B T

3�ω0
≈ 0.137 kB = 1.89 × 10−24 J/K .

At low temperatures, the heat capacity is a linear function of temperature, which
agrees with the result of Problem 12.1.

Problem 12.5.
The spectrum of elementary excitations in superfluid helium is rather peculiar: At
wavevectors below 0.8 × 1010/m, the usual phonon dispersion relation E(q) = �cq
applies, whereas for excitations with wavevectors around q0 = 2 × 1010/m known
as rotons one has

E(q) = � + �
2

2m
(q − q0)

2 ,

where � = 0.746 meV and m = 1.2 × 10−27 kg. Calculate the roton heat capacity
per unit volume in helium at 2 K!

Like all elementary excitations, rotons too are bosonswith zero chemical potential,
and hence the corresponding grand potential � can be obtained from

β� =
∑

j

ln
(
1 − exp

(−βE j
)) =

(
V

2π2

)∫ ∞

0
ln
(
1 − exp (−βE)

)
q2 dq ,

with E = E(q). Since at 2 K βE ≥ β� ≈ 4.3, one can approximately put ln
(
1 −

exp(−βE)
) ≈ − exp(−βE). The integral converges rapidly, and thus its lower bound

can be safely extended from 0 to −∞, which simplifies the calculation. After intro-
ducing a new variable q̃ = q − q0

β� ≈ − V

2π2
exp(−β�)

∫ ∞

−∞
exp

(
−β�

2

2m
q̃2

)
(q̃ + q0)

2 dq̃

= − V

2π2
exp(−β�)

√
2πm

β�2

(
m

β�2
+ q2

0

)

≈ − V

2π2
exp(−β�)

√
2πm

β�2
q2
0 ,

where at the end we took into account that m/β�
2q2

0 = 7.5 × 10−3 � 1.
Thus the average energy of rotons is

〈E〉 = V q2
0

2π2

√
2πm

�2

(
1

2
+ �

kB T

)
(kB T )3/2 exp

(
− �

kB T

)
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and their heat capacity per unit volume

C/V = kB
q2
0

2π2

√
2πmkB T

�2

[
3

4
+ �

kB T
+
(

�

kB T

)2
]

exp

(
− �

kB T

)
;

in helium at 2 K, this amounts to 3.82 × 105 J/m3K.

Problem 12.6.
The dispersion relation of longitudinal waves in a one-dimensional solid is given
by ω(q) = ω0 + αq2, where ω0 = 1013 s−1 and α = 30 m2/s. How many optical
phonons per unit length are there in the solid at low temperatures, say at 10 K?
Calculate the phonon heat capacity of a meter-long sample!

In one dimension, the sum over the allowed wave vectors is transformed into an
integral:

∑
j → (L/π)

∫
dq, where L denotes the length of the sample. Then the

average number of phonons in the sample is given by

〈N 〉 =
∑

j

1

exp (β�ω j ) − 1
= L

2π
√

α

∫ ωmax

ω0

dω
[
exp (β�ω) − 1

]√
ω − ω0

.

By taking into account that even at the lowest ω we have exp (β�ω) � 1 this result
can be approximated by

〈N 〉 = L

2π
√

αβ�
exp (−β�ω0)

∫ umax

0

exp (−u)√
u

du ,

where we introduced u = β�(ω − ω0). In the low-temperature limit one may set
umax → ∞ before evaluating the remaining integral; if we do so it reduces to
�(1/2) = √

π. Thus the density of phonons in the solid is

〈N 〉
L

= exp (−β�ω0)

2
√

αβ�π
= 28 m−1.

Similarly, the grand potential (needed for the evaluation of the internal energy and
the heat capacity) is calculated as follows:

β� =
∑

j

ln
(
1 − exp (−β�ω j )

) = L

2π
√

α

∫ ωmax

ω0

ln
(
1 − exp (−β�ω)

)

√
ω − ω0

Again exp (−β�ω) � 1 so that the logarithm can be expanded up to first order which
eventually leads to the same dimensionless integral as in the above calculation of
〈N 〉. Thus

β� = − L exp (−β�ω0)

2
√

αβ�π
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and

〈E〉 =
(

∂β�

∂β

)

L

= L exp (−β�ω0)

2
√

αβ�π

(
�ω0 + 1

2β

)
.

Finally,

C = d〈E〉
dT

= kB
L exp (−β�ω0)

2
√

αβ�π

[
(β�ω0)

2 + β�ω0 + 3

4

]
= 0.16 eV/K.

Problem 12.7.
Calculate the pressure of blackbody radiation at 300K! At this temperature, evaluate
the entropy and the average number of photons within a cavity of a volume of 1 cm3!

The blackbody radiation too can be represented by a system of independent
harmonic oscillators with frequencies given by ω j = cq j , where c is the speed
of light in vacuum and q j are the corresponding wavevectors. The grand canon-

ical partition function reads exp (−β�) = ∏
j

[
1 − exp

(−�ω j/kB T
)]−1

because
photons are bosons and because their chemical potential is equal to 0. From the
relation � = −pV , where p is the pressure and V is the volume, it follows that
pV = −kB T

∑
j ln
(
1 − exp(−�ω j/kB T )

)
. By replacing the sum over all oscilla-

tors by an integral,
∑

j → (V/π2)
∫∞
0 q2 dq (recall that light has two independent

polarizations), we further obtain

pV = −kB T V

π2

∫ ∞

0
ln

(
1 − exp

(
− �cq

kB T

))
q2 dq

= − V (kB T )4

π2(�c)3

∫ ∞

0
ln
(
1 − exp(−u)

)
u2 du

= V (kB T )4

π2(�c)3

∞∑

n=1

∫ ∞

0

exp(−nu)u2

n
du

= V (kB T )4

π2(�c)3

∞∑

n=1

2

n4
= π2V (kB T )4

45(�c)3
.

Here we introduced u = �cq/kB T and we took into account that
∑∞

n=1 n−4 =
ζ(4) = π4/90; ζ(s) is the Riemann zeta function. From here we have

p = 4σ

3c
T 4 ,

where

σ = π2k4
B

60�3c2
= 5.67 × 10−8 W/m2K4

is the Stefan–Boltzmann constant. At 300 K, the pressure of light is equal to 2.04 ×
10−6 Pa. The fact that the number of photons is not constant is reflected in the
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pressure of light depending on temperature but not on volume, so that the isothermal
compressibility of the photon gas is infinite.

The entropy is calculated by first realizing that in particles with zero chemical
potential the Helmholtz free energy coincides with the grand potential so that F =
−pV = −4σV T 4/3c. Thus we have

S = −
(

∂F

∂T

)

V

= 16σ

3c
V T 3 = 2.72 × 10−14 J/K .

Let us now evaluate the average number of photons inside the cavity:

〈N 〉 =
∑

j

1

exp(�ω j/kB T ) − 1
= V

π2

(
kB T

�c

)3 ∫ ∞

0

u2 du

exp u − 1

= V

π2

(
kB T

�c

)3 ∞∑

n=1

∫ ∞

0
exp(−nu)u2 du = V

π2

(
kB T

�c

)3 ∞∑

n=1

2

n3

= 2ζ(3)V

π2

(
kB T

�c

)3

,

where ζ(3) = ∑∞
n=1 n−3 = 1.202 . . . A cavity of a volume of 1 cm3 thus contains

5.46 × 108 photons on average.

Problem 12.8.
The spectrum of light emitted by a star peaks at a wavelength of 750 nm. What is
the surface temperature of the star? The star can be approximated by a blackbody.

The energy flux density of isotropic radiation is given by j = cu/4, where c is
the speed of light and u is the density of the internal energy. Each narrow frequency
interval dω thus carries the energy flux density of d j = (c�ω/4V ) dN (ω), where V
is the volume and

dN (ω) = 1

exp (β�ω) − 1

V q2 dq

π2
= 1

exp (β�ω) − 1

V ω2 dω

π2c3

is the average number of photons in this interval. Here, we took into account the dis-
persion relation ω = cq (q denoting the wavevector), two independent polarizations
of light, and the fact that linearly independent waves occupy only one octant of the
reciprocal space. Thus

d j

dω
= �ω3

4π2c2[exp (β�ω) − 1] .
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Now we translate this expression into d j/dλ since the peak of the spectral density
is specified in terms of wavelength rather than frequency. By writing ω = 2πc/λ we
have

d j

dλ
= d j

dω

∣∣∣∣
dω

dλ

∣∣∣∣ = d j

dω

2πc

λ2

and
d j

dλ
= (2πc)2�

λ5[exp (2πβ�c/λ) − 1] .

This is Planck’s law.Thepeak atλ0 is foundby settingd(d j/dλ)/dλ = 0,which leads
to the nonlinear equation 5[1 − exp (−x)] = x , where x = 2πβ�c/λ. The equation
can be solved numerically, e.g., iteratively, but it is easy to see that x ≈ 5. The exact
solution is x0 = 4.965, which results in the surface temperature of the star of

T = 2π�c

λ0kB x0
= 3870 K .

This result is Wien’s displacement law, which relates the position of the spectral
peak to the temperature of the blackbody. Usually it is written as λ0T = kW , where
kW = 2π�c/kB x0 = 2.9 × 10−3 mK is the Wien’s displacement constant.

Problem 12.9.
Find the adiabatic compressibility of a polarized two-dimensional photon gas at
300 K!

We follow the notation and the approach of Problem 12.7. In two dimensions,
the summation over allowed wavevectors (radiation eigenmodes) is converted into
an integral as

∑
j → (A/2π)

∫∞
0 qdq (valid for a single polarization of light). By

setting � = −γ A, where γ and A denote the surface tension (i.e., pressure in two
dimensions) and the surface area of the photon gas, respectively, we have

βγ A = − A

2π

∫ ∞

0
ln
(
1 − exp (−β�cq)

)
qdq = . . .

= Aζ(3)

2π(β�c)2
= −β� .

Weretraced all the steps of the analogous calculation in three dimensions. To calculate
the adiabatic compressibility, we need the entropy of the photon gas as a function of
γ = ζ(3)(kB T )3/2π(�c)2 and A:

S = −
(

∂�

∂T

)

A

= 3ζ(3)Ak3
B T 2

2π(�c)2
∝ AT 2 ∝ Aγ2/3 .

(In two dimensions, the equation of a reversible adiabatic process in a photon
gas reads γ A3/2 = const., whereas in three dimensions, it is pV 4/3 = const.; see
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Problem 4.18.) By differentiating S(γ, A) we obtain the final result:

χS = − 1

A

(
∂ A

∂ p

)

S

= 2

3γ
= 4π(�c)2

3ζ(3)(kB T )3

= 4.9 × 1010 m/N .

Problem 12.10.
What is the chemical potential of the free electron gas in silver at absolute zero?
Calculate the pressure and the isothermal compressibility of this Fermi gas! The
density and the kilomolar mass of silver are 10500 kg/m3 and 107.9 kg/kmol,
respectively; there is one conduction electron per atom.

The chemical potential of electrons at absolute zero μ(0) is obtained by realizing
that the occupation number

f (μ, E) = 1

exp
(
(E − μ)/kB T

)+ 1

is equal to 1 in all states with energy smaller thanμ(0) and 0 otherwise.We recall that
the density of states of free electronswith E = �

2q2/2m and twofold spin degeneracy
is equal to

g(E) = V

2π2

(
2m

�2

)3/2

E1/2 ,

and we obtain

N = V

2π2

(
2m

�2

)3/2 ∫ μ(0)

0
E1/2 dE = V

3π2

[
2mμ(0)

�2

]3/2

or

μ(0) = �
2

2m

(
3π2N

V

)2/3

= �
2

2m

(
3π2Z NAρ

M

)2/3

= 5.50 eV ,

where Z is the number of conduction electrons per atom.
The isothermal compressibility of the electron gas is obtained from the equation

of state which, in turn, follows from the grand canonical partition function since
� = −pV . Therefore we first calculate the grand potential:

β� = − V

2π2

(
2m

�2

)3/2 ∫ ∞

0
ln
(
1 + exp

(
β(μ − E)

))
E1/2 dE

= − V

3π2

(
2m

�2

)3/2 [
E3/2 ln

(
1 + exp

(
β(μ − E)

))∣∣∣
∞
0

+β

∫ ∞

0

E3/2dE

exp
(
β(E − μ)

)+ 1

]
.
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The first term of the above result is obtained by integration by parts and is
equal to 0, which can be easily seen by applying L’Hôpital rule. The second
term contains f (μ, E) which reduces to a step function at absolute zero. Thus
pV = (

2V/15π2
) (
2m/�

2
)3/2

μ5/2(0) and finally

p = 2Nμ(0)

5V

with

χT = 3

5p
,

where we took into account that dμ(0)/dV = −2μ(0)/3V .
The pressure of the gas of conduction electrons in silver is 2.05 × 1010 Pa and the

isothermal compressibility is 2.92 × 10−11 Pa−1. This value exceeds the reciprocal
Young’s modulus of silver equal to 1.21 × 10−11 Pa−1 at room temperature.

Problem 12.11.
Assume that at low temperatures, the occupation number in a Fermi gas of the
conduction electrons in a metal can be approximated by

f (μ, E) =
⎧
⎨

⎩

1, E < μ − δ
1/2 − (E − μ)/2δ, μ − δ < E < μ + δ
0, E > μ + δ

,

where δ = 3kB T . Calculate the change of the Fermi energy in caesium after it is
heated from 0 to 500 K; at absolute zero it is equal to 1.58 eV.

Within this model of the occupation number depicted in Fig. 12.3, the number of
electrons N = ∫∞

0 f (μ, E)g(E) dE is equal to

Fig. 12.3 A simple model of the fermion occupation number at finite temperatures (dashed line)
and the corresponding exact occupation number (solid line) at T = 0.1μ/kB
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N = V

2π2

(
2m

�2

)3/2 [∫ μ−δ

0
E1/2 dE +

∫ μ+δ

μ−δ

(
1

2
− E − μ

2δ

)
E1/2 dE

]

= V

3π2

(
2mμ

�2

)3/2 {
(1 − u)3/2 − 3

10u

[
(1 + u)5/2 − (1 − u)5/2

]

+1

2

(
1 + 1

u

) [
(1 + u)3/2 − (1 − u)3/2

]}
,

where u = δ/μ. A more transparent form is obtained by expanding the expression
in the curly brackets for u � 1, which leads to

N = V

3π2

(
2mμ

�2

)3/2 [
1 + 1

8
u2 + O(u4)

]
.

Given that
(
3π2N/V

)2/3
�
2/2m is the chemical potential at T = 0, the above result

can also be rewritten as μ3/2(0) = μ3/2
(
1 + u2/8

)
so that

μ(T ) = μ(0)

(
1 − u2

12

)
≈ μ(0)

{

1 − 3

4

[
kB T

μ(0)

]2}

.

Finally, we replaced μ(T ) in the correction term by μ(0), which is only slightly
smaller; we also inserted δ = 3kB T . The resulting temperature dependence of the
Fermi energy at low temperatures is qualitatively correct. By using the simple model
of the occupation number with δ = 3kB T , we merely misunderestimate the magni-
tude of the finite-temperature correction: The more accurate Sommerfeld expansion
yields π2/12 ≈ 0.82246 instead of 3/4. Our result predicts that the chemical poten-
tial of caesium at 500 K is smaller than at absolute zero by 0.883 meV.

Problem 12.12.
The magnetic phenomena in the electron gas are due to the spins of electrons. Calcu-
late the surface density of the magnetic dipole moment in a two-dimensional electron
gas at 6000 K after a 10 T magnetic field is switched on! At this temperature, the
chemical potential of this gas is equal to 5 eV in zero field. By how much would it
change if the gas were exposed to a field of 105 T? (Fields so strong are thought
to exist in the atmosphere of neutron stars.) The mass of electron is 9.1 × 10−31 kg
and the Bohr magneton is pB = 9.27 × 10−24 Am2.

In a magnetic field of magnetic flux density B, the energy of electrons consists
of the kinetic energy as well as of the interaction between the electron spin and the
field which reads ±pB B (Fig. 12.4). We took into account that the magnitude of
spin is 1/2 and that the gyromagnetic ratio of the electron is 2pB/�. The sign of the
interaction energy depends on the orientation of the spin with respect to the field. As
a result, the numbers of electrons oriented along the field (N+) and in the opposite
direction (N−) are different. This difference ismanifested as a nonzeromagnetization



232 12 Grand Canonical Ensemble

Fig. 12.4 Fermi–Dirac distribution as a function of energy (solid line). The width of the step at
E ≈ μ is approximately equal to 2kB T . Once the magnetic field is switched on, the energy of
electrons also depends on the orientation of the spin. The distributions f− and f+ corresponding
to spin down and up, respectively, are shifted by ±pB B with respect to the zero-field distribution
f (B = 0) (dashed lines)

M = pB |N+ − N−|/A (here given per unit surface area A); this is referred to as the
Pauli paramagnetism. The number of electrons in zero field is equal to

N = g

∫ ∞

0

dE

1 + exp
(
β(E − μ)

) = gkB T ln
(
1 + exp (βμ)

)
,

where g = m A/π�
2 is the density of states in two dimensions, μ is the chemical

potential in zero field, and m is the electron mass. After the magnetic field is turned
on, the above result is replaced by

N± = gkB T

2
ln

(
1 + exp

(
β(μ ∓ pB B)

))
.

Now this is used to calculate the magnetization:

M = g pBkB T

2A
ln

(
1 + exp

(
β(μ + pB B)

)

1 + exp
(
β(μ − pB B)

)

)

≈ mp2
B B

π�2
= 2.24 × 10−8 A .

We took into account that exp
(
β(μ ± pB B)

) � 1 and pB B � μ.
In the above derivation we assumed that the chemical potential is only negligibly

altered by the magnetic field, which is not the case in extremely strong fields. The
chemical potential μ f in a strong field of 105 T is obtained by requiring that the total
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number of fermions N = N+ + N− be conserved:

ln
(
1 + exp (βμ)

) = 1

2
ln
([
1 + exp

(
β(μ f + pB B)

)]

× [
1 + exp

(
β(μ f − pB B)

)])
.

We introduce u = exp (βμ f ) and obtain a quadratic equation

u2 + 2u cosh (β pB B) + 1 − [
1 + exp (βμ)

]2 = 0 .

The physically relevant solution of this equation is u = 3220, which yields μ f =
4.18 eV. Despite the rather high temperature, the nonrelativistic treatment of the
electron gas was appropriate since both kB T ≈ 0.5 eV and μ = 5 eV are much
smaller than the rest energy of the electron of 0.511 MeV.

Problem 12.13.
Calculate the chemical potential of the free electron gas in a white dwarf star of den-
sity 109 kg/m3 and temperature 105 K! Such a star can be regarded as a mixture of
helium nuclei and electrons. Should the electrons be treated as relativistic particles?
What is the average energy of electrons?

This case differs from that in Problem 12.10 only in the energy–momentum rela-
tion E(p) which is relativistic:

E2 = m2c4 + p2c2 .

It is convenient to introduce a new variable u so that sinh u = p/mc; then E =
mc2 cosh u. The number of states within an interval of width of dp is

8πV

h3
p2 dp = 8πV m3c3

h3
sinh2 u cosh u du ,

and the chemical potential is determined by

N = 8πV m3c3

h3

∫ ∞

0

sinh2 u cosh u du

exp
(
β(mc2 cosh u − μ)

)+ 1
.

We assume that the electron gas is strongly degenerate so that kB T � μ, and we
calculate the chemical potential at absolute zero:

N = 8πV m3c3

h3

∫ u0

0
sinh2 u cosh u du = 8πV m3c3

3h3
sinh3 u0 .

From this relation we express u0 and insert it into μ(0) = mc2 cosh u0 to find that

μ(0) = mc2

√

1 +
(

3N

8πV

)2/3 h2

m2c2
.
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At low number densities N/V , μ(0) ≈ mc2 + (3N/8πV )2/3 h2/2m, which agrees
with the result of Problem 12.10. The number density of electrons inside a white
dwarf is 3 × 1035/m3 (two electrons per one helium atom) so that the chemical
potential is 0.657 MeV, which is not too far from the rest energy of the electron of
mc2 = 0.511MeV. In this case, a nonrelativistic analysis would evidently produce a
result not too far from the correct one.We also note that the characteristic temperature
corresponding to these energies is ∼109 K, which is much more than the actual
temperature of the white dwarf. This comparison justifies our treating the electron
gas as if it were at absolute zero.

The average particle energy in a highly degenerate electron gas at absolute zero
is

〈E〉
N

= 8πV m4c5

Nh3

∫ u0

0
sinh2 u cosh2 u du

= π

4

V

N

m4c5

h3
(sinh 4u0 − 4u0) = 3

32

sinh 4u0 − 4u0

sinh3 u0
mc2 .

From cosh u0 = μ(0)/mc2 we obtain u0 = 0.739, yielding 〈E〉/N = 0.602 MeV.
From this result we subtract the rest energy so as to obtain the kinetic energy, and
compare the kinetic energy with μ(0) − mc2. The ratio

〈E〉/N − mc2

μ(0) − mc2
= 0.623

differs only slightly from the nonrelativistic result of 3/5.

Problem 12.14.
Calculate the pressure of the free electron gas in a white dwarf star! The electrons
should be treated relativistically, whereas their distribution over energy levels can
be assumed to be the same as at absolute zero. The electron density is 3 × 1035 m−3.

The pressure can be obtained just like in Problem 12.10. When calculating the
grand potential, we introduce the same reduced variable as in Problem 12.13 and we
integrate by parts:

β� =−8πV m3c3

h3

∫ ∞

0
ln
(
1+ exp

(
β(μ − mc2 cosh u)

))
sinh2u cosh u du

= −8πV m3c3

h3

[
sinh3 u

3
ln
(
1 + exp

(
β(μ − mc2 cosh u)

))
∣∣∣∣

∞

0

+βmc2

3

∫ ∞

0

sinh4 u du

exp
(
β(mc2 cosh u − μ)

)+ 1

]
.
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The first term is equal to 0, whereas at T = 0 the second one gives

β� = −8πV m4c5

3h3kB T

∫ u0

0
sinh4 u du

= −2πV m4c5

3h3kB T

(
sinh3 u0 cosh u0 − 3

2
sinh u0 cosh u0 + 3

2
u0

)
.

Here u0 is determined by sinh3 u0 = 3Nh3/8πV m3c3 (Problem 12.13); at N/V =
3 × 1035 m−3, u0 = 0.739. The pressure follows from � = −pV and is equal to
2.74 × 1021 Pa.

Problem 12.15.
Calculate the heat capacity of a degenerate ultrarelativistic electron gas at 1010 K
and density 3.5 × 1010 kg/m3! The energy of the electrons is given by E = cp,where
c stands for the speed of light and p is the linear momentum. Use the low-temperature
(Sommerfeld) expansion

∫ ∞

0
h(E) f (E) dE =

∫ μ

0
h(E) dE + π2

6
(kB T )2

dh

dE

∣∣∣
μ

+ . . . ,

where f (E) is the Fermi occupation number, h(E) is a continuous differentiable
function at E = μ, and μ is the chemical potential.

We start by identifying the density of states g(E) for ultrarelativistic electrons.
Using the Bohr–Sommerfeld rule, a sum over single-electron states can be replaced
by an integral over the phase space:

∑
→ 2

∫
dr 4π p2dp

h3
= V

π2�3c3

∫
E2dE =

∫
g(E) dE ,

where g(E) = V E2/π2(�c)3; the spin degeneracy is taken into account.
To obtain the heat capacity, we first need to calculate the average (internal)

energy 〈E〉 = ∫∞
0 f (E)g(E)E dE . The Sommerfeld expansion will evidently give

〈E〉 which will depend on temperature both explicitly and through μ, which itself
depends on temperature. Thusμ(T ) should be derived first by calculating the number
of electrons, again using the Sommerfeld expansion

〈N 〉 =
∫ ∞

0
f (E)g(E) dE = V

π2(�c)3
μ3

3

[

1 + π2

(
kbT

μ

)2
]

,

with h(E) = g(E). From here we express the chemical potential at T = 0:

μ0 = �c
3

√
3π2〈N 〉

V
,
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whereas at finite temperatures

μ(T ) = μ0

[

1 − π2

3

(
kB T

μ0

)2
]

.

Here and below we assume that at low temperatures μ(T ) and μ0 do not differ
significantly.

The average energy is obtained by setting h(E) = Eg(E) and reads

〈E〉 = 3

4

〈N 〉μ4

μ3
0

[

1 + 2π2

(
kB T

μ

)2
]

≈ 3

4
〈N 〉μ0

[

1 + 2π2

3

(
kB T

μ0

)2
]

.

Thus the heat capacity per particle is a linear function of temperature:

c = 1

〈N 〉
dE

dT
= π2k2

B T

μ0
.

Numerical results:μ0 = 20.6MeV(this ismuch larger than the rest energyof electron
of 0.52 MeV, which justifies the ultrarelativistic limit used) and c = 35.6 μeV/K.

Problem 12.16.
What is the Fermi energy of a two-dimensional free electron gas at absolute zero and
at 200 K? What is the lowest temperature such that the occupation probability for
all electron levels is less than 0.5? The density of electrons equals 1017/m2.

The chemical potential of electrons is implicitly determined by the relation N =∫∞
0 f (μ, E)g(E) dE , where N is the number of electrons,

f (μ, E) = [
exp

(
(E − μ)/kB T

)+ 1
]−1

is their occupation number, and g(E) is the density of states. In two dimensions the
latter is given by

g(E) = m A

π�2
,

where A denotes the surface area of the system. Then

N = m A

π�2

∫ ∞

0

dE

exp
(
(E − μ)/kB T

)+ 1

= m AkB T

π�2

∫ ∞

−μ/kB T

du

exp u + 1
= m AkB T

π�2
ln

(
1 + exp

(
μ

kB T

))
,
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which gives

μ(T ) = kB T ln

(
exp

(
π�

2N

m AkB T

)
− 1

)
.

The temperature dependence of the chemical potential, which amounts to Nπ�
2/m A

= 24.0 meV at absolute zero and to 19.1 meV at 200 K, is shown in Fig. 12.5.
As suggested by Problem 12.11, the behavior of the chemical potential of a three-
dimensional electron gas is qualitatively similar in that μ(T ) is a decreasing function
with μ > 0 at low temperatures whereas at high enough temperatures μ < 0, which
can be confirmed by a rigorous numerical calculation.

Fig. 12.5 Temperature dependence of the chemical potential in a two-dimensional electron gas
(solid line). In two dimensions the chemical potential of bosonswith same characteristic temperature
Te differs only by a constant offset (dashed line)

The numerical answer: The occupation number is equal to 0.5 at E = μ(T ).
Since E > 0, the occupation of each electron state will be below 0.5 at temperatures
where μ(T ) < 0, that is for T > Te/ ln 2 = 401 K. (Here Te = Nπ�

2/m AkB is the
characteristic temperature.)

The above analysis can be easily extended to calculate the chemical potential of
a two-dimensional boson gas: For particles with spin j one has

μ(T ) = kB T ln

(
1 − exp

(
− 2π�

2N

(2 j + 1)AmkB T

))
.

The characteristic temperature of a boson gas differs from Te because of the different
spin degeneracy. The functional dependence of the chemical potential of bosons on
temperature is the same as for fermions, the only difference lying in the additive
constant which ensures that μ < 0 so that the occupation number is positive for all
boson states including those with E = 0 (Fig. 12.5).
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Problem 12.17.
At absolute zero, the surface tension of a two-dimensional electron gas is equal to
10 N/m. Calculate its value at 106 K!

In the partition function exp (−β�) = ∏∞
j=0

[
1 + exp

(
β(μ − E j )

)]
, where the

index j runs over levels with energies E j , the sum can be replaced by an integral
and the discrete levels E j by a continuous variable E . Thus we find that the grand
potential reads

� = −kB T
∫ ∞

0
ln
(
1 + exp

(
β(μ − E)

))
g(E) dE ,

where g(E) = m A/π�
2 is the density of states of a free particle in two dimensions

(below denoted by g alone because it does not depend on E) and E = �
2q2/2m is the

kinetic energy; m stands for the mass of electron, q for the wavevector, and A for the
surface area occupied by the electrons. The surface tension of the gas γ is obtained
from the grand potential � = −γ A = −kB T I (T ). Here I (T ) is a dimensionless
integral which can be integrated by parts:

I (T ) = g

∫ ∞

0
ln
(
1 + exp

(
β(μ − E)

))
dE

= gE ln
(
1 + exp

(
β(μ − E)

))∣∣∣
∞
0

+ g

∫ ∞

0

βE dE

1 + exp
(
β(E − μ)

) .

The first term is 0 both at the upper and at the lower bound, which can be seen by
applying the L’Hôpital rule. The remaining integral can now be calculated at T = 0.

The Fermi distribution is replaced by a step function so that

I (0) = g

∫ μ0

0
βE dE = (gβμ2

0/2) = βN 2/2g.

The chemical potential is determined by the number of electrons in the system:
N = ∫ μ0

0 g dE = gμ0. We finally find that at T = 0

γ(0) = πN 2
�
2

2m A2

and μ0 = �[2πγ(0)/m]1/2 = 5.5 eV. At T = 106 K, on the other hand, βμ � 0 and
the entire analysis can be performed in the high-temperature limit where even at the

lowest energies, one can write ln
(
1 + exp

(
β(μ − E)

)) ≈ exp
(
β(μ − E)

)
. Then

I (T ) = g

∫ ∞

0
exp

(
β(μ − E)

)
dE = gkB T exp (βμ) .
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The chemical potential is again found by requiring that

N =
∫ ∞

0

g dE

exp
(
β(E − μ)

)+ 1

≈ g

∫ ∞

0
exp

(
β(μ − E)

)
dE = gkB T exp (βμ) .

Thus

γ(T → ∞) = NkB T

A
= kB T

�

√
2mγ(0)

π
= 315 N/m .

The high-temperature result is the classical ideal gas equation of state in two dimen-
sions, which is reasonable since in this limit the occupation number is low for
all electron states. The requirement that the particle number be conserved also
implies that N = gμ0 = gkB T exp (βμ), or, at 106 K, βμ = ln (βμ0) = −2.75 and
μ = −237 eV. This a posteiori justifies the high-temperature limit used above.

Problem 12.18.
The conduction electrons in a thin layer of gallium arsenide deposited onto a silicon
crystal behave like a two-dimensional system. Explore the asymptotic temperature
dependence of the heat capacity of these electrons! What is their heat capacity at
300 K? The density of electrons is 5 × 1016/m2.

The average energy of electrons is

〈E〉 =
(

∂β�

∂β

)

βμ

= m A

π�2

∫ ∞

0

E dE

exp
(
β(E − μ)

)+ 1
,

where we inserted the grand potential � given in Problem 12.17. The resulting
integral is evaluated by keeping in mind that at high temperatures μ < 0 so that the
occupation number of all energy levels is small or exp

(
β(E − μ)

) � 1. Then the
denominator can be expanded, yielding

〈E〉 = m A

π�2

∞∑

n=1

(−1)n−1
∫ ∞

0
exp

(−nβ(E − μ)
)
E dE

= m A

π�2β2

∞∑

n=1

(−1)n−1

n2
exp (nβμ) .

NowweuseTe to denote Nπ�
2/m AkB andwe recall that exp (βμ) = exp (Te/T ) − 1

(Problem 12.16) so that

〈E〉 = NkB Te

(
T

Te

)2 ∞∑

n=1

(−1)n−1

n2

[
exp

(
Te

T

)
− 1

]n

.



240 12 Grand Canonical Ensemble

Thus the heat capacity is equal to

C = NkB

∞∑

n=1

(−1)n−1
[
1 − exp (Te/T )

]n−1

n2

×
[(

2
T

Te
− n

)
exp

(
Te

T

)
− 2

T

Te

]

= NkB

[

1 − 1

36

(
Te

T

)2

+ . . .

]

.

The final result was obtained by Taylor-expanding exp (Te/T ); the second-order
correction in Te/T contains contributions from terms with n = 1, 2, and 3. With the
above data one has Te = 139 K, yielding μ < 0 for T > Te/ ln 2 = 200 K. At 300 K
we obtain C/A = 6.86 × 10−7 J/m2K.

Problem 12.19.
An electron gas with a Fermi energy of 0.5 eV is confined to a layer of thickness of
1 nm. Calculate the density of the gas at absolute zero! What is the density of the
gas after the layer thickness is increased to 2 nm at a fixed Fermi energy, which is
ensured by introducing additional electrons?

The layer is a nearly two-dimensional system in that its thickness d is finite but
much smaller than its lateral dimensions. We choose the z-axis to point along the
layer normal, and the x and y axes lie within the plane of the layer. The layer acts like
an infinite potential well trapping the electrons. At absolute zero all possible energy
levels where E < μ are occupied whereas those with E > 0 are unoccupied. Each
energy level is characterized by a wavevector q = (qx , qy, qz). The allowed values
of qz are determined by the boundary conditions for the electron wavefunctions at
the layer boundaries, yielding qz = nzπ/d (nz = 1, 2, . . .). On the other hand, as the
lateral dimensions of the layer are much larger than its thickness d, the spacing of the
allowed values of qx and qy in the reciprocal space is much smaller than π/d. Thus
when counting the electron states, qx and qy can be treated as continuous variables
whereas qz is a discrete variable.

The energy of an electron is given by

E = �
2

2m

(
Q2 + q2

z

)
,

where Q2 = q2
x + q2

y . At T = 0, the energies of the occupied states extend up to the
chemical potential μ. To find the largest possible value of nz consistent with this
restriction, we set E ≤ μ and take Q = 0 to obtain nz ≤ (d/π�)

√
2mμ = 1.15: In

other words, only states with nz = 1 are occupied. The total number of electrons in



12 Grand Canonical Ensemble 241

states with E ≤ μ and qz = π/d is equal to

N =
∑

q

f (E) = 2
∫

dxdy dqxdqy

(2π)2
= A

π

∫ Qmax

0
Q dQ

= Am

π�2

∫ μ

�2π2/2md2
dE .

Hence
N

V
= mμ

π�2d
− π

2d3
= 5.1 × 1026 m−3.

When the layer thickness is increased to 2d, this increases the smallest nz to 2.3 so
that both nz = 1 and nz = 2 states are allowed. Therefore

N ′ = A

π

(∫ Qmax(nz=1)

0
Q dQ +

∫ Qmax(nz=2)

0
Q dQ

)
,

where

Qmax(nz) =
√
2mμ

�2
− n2

zπ
2

4d2
.

Finally, the density of electrons in the 2 nm-thick layer must be equal to

N ′

V
= mμ

π�2d
− 5π

16d3
= 1.1 × 1027 m−3.

Problem 12.20.
A nondegenerate ideal gas consisting of atoms with spin 1/2 is in coexistence with
the condensed phase. After switching on a 60 T magnetic field at 300 K, the density
of the gas increases by 0.1%. By how much does the chemical potential of the gas
change in this process? Calculate the corresponding change of internal energy! The
gyromagnetic ratio is 2pB/�, the Bohr magneton pB = 9.27 × 10−24 Am2; both the
temperature and the volume of the gas are fixed.

The number of atoms of gas is not fixed because the gas is in a dynamic equilib-
rium with the condensed phase and exchanges atoms with it. Apart from the kinetic
term, the energy of atoms contains the magnetic term −γ� jz B, where γ denotes the
gyromagnetic ratio and jz the projection of the spin onto the direction of the field.
Since the gas is nondegenerate, the Pauli exclusion principle does not apply so that
the partition function for N atoms with a spin j is given by

exp (−β�) =
∞∑

N=0

exp (βμN )

h3N N !

⎡

⎣
j∑

jz=− j

∫

V
dr
∫

exp
(−βE(p, jz)

)
dp

⎤

⎦

N

,
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where E(p, jz) = p2/2m − γ� jz B and μ is the chemical potential. We use a as a
shorthand for γ�B for brevity, integrate over the volume and the momenta, calculate
the arithmetic sum over jz , and obtain

exp (−β�) =
∞∑

N=0

exp (βμN )V N

h3N N !

×
(
2πm

β

)3N/2
[
sinh

(
βa( j + 1/2)

)

sinh (βa/2)

]N

= exp

(
V exp (βμ)
(
βh2/2πm

)3/2
sinh

(
βa( j + 1/2)

)

sinh (βa/2)

)

.

In the last step, we recognize that the sumover N is the Taylor series of an exponential
function. Nowwe can express the grand potential�: After inserting j = 1/2we have

β� = −2V exp (βμ)

(
2πm

βh2

)3/2

cosh

(
βa

2

)
.

The number density of the gas is calculated from the differential dβ� = 〈E〉 dβ −
〈N 〉 dβμ − β p dV + βV H dB, where H is the strength of the magnetic field:

〈n〉 = 〈N 〉
V

= − 1

V

(
∂β�

∂βμ

)

β,V,B

= 2 exp (βμ)

(
2πm

βh2

)3/2

cosh

(
βa

2

)

and the internal energy 〈E〉 = (∂β�/∂β)βμ,V,B reads

〈E〉 = V exp (βμ)

(
2πm

βh2

)3/2 [
3β−1 cosh

(
βa

2

)
− a sinh

(
βa

2

)]

= 〈n〉V
2

[
3β−1 − a tanh

(
βa

2

)]
.

When the field is turned on at constant temperature and volume, the average density
increases from 〈n〉′ to 〈n〉. This is accompanied by a change of chemical potential
from μ′ to μ, where

〈n〉
〈n〉′ = exp

(
β(μ − μ′)

)
cosh

(
βa

2

)
.

Therefore the change of the chemical potential is

μ − μ′ = kB T ln

( 〈n〉
〈n〉′ cosh (βa/2)

)
≈ −2.1 × 10−4 eV .
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The ratio of the internal energies with field on and in zero field is given by

〈E〉
〈E〉′ = 〈n〉

〈n〉′
[
1 − βa

3
tanh

(
βa

2

)]
≈ 0.99 .

Thus the internal energy decreases by 1%.

Problem 12.21.
By how much does the pressure of gaseous helium differ from that of a classical ideal
gas at 30 K and number density of 2 × 1028/m3? The angular momentum of helium
atoms is 0 and its kilomolar mass is 4 kg/kmol.

We first calculate the absolute activity of a classical ideal gas at the given condi-
tions: exp (βμ) = Nλ3

B/gV = 0.081. Here

λB =
(

h2

2πmkB T

)1/2

is the thermal de Broglie wavelength and g is the spin degeneracy 2 j + 1 equal to
1 for helium. As the absolute activity is small, the chemical potential μ < 0 and the
occupation number is small in all states. In this limit, the chemical potential of the
boson gas does not differ significantly from the chemical potential of the classical
ideal gas and can be approximately determined by expanding the normalization
integral in a power series in terms of the absolute activity. As illustrated in Fig. 12.6,
this can be done by expanding the occupation number in terms of exp

(−β(E − μ)
)
.

Fig. 12.6 Occupation number of fermions (a), classical particles (b), and bosons (c) (solid
lines), together with the approximate forms of the Fermi–Dirac and Bose–Einstein distributions,
exp

(−β(E − μ)
)∓ exp

(−2β(E − μ)
)
(dashed lines). The smaller the chemical potential, the

more accurate the approximations
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The calculation can be carried out simultaneously for fermions (upper sign) and
bosons (lower sign):

N = gV

4π2

(
2m

�2

)3/2 ∫ ∞

0

E1/2 dE

exp
(
β(E − μ±)

)± 1

≈ gV

4π2

(
2m

�2

)3/2 [∫ ∞

0
E1/2 exp

(−β(E − μ±)
)
dE

∓
∫ ∞

0
E1/2 exp

(−2β(E − μ±)
)
dE

]

= gV

λ3
B

[
exp(βμ±) ∓ exp(2βμ±)

23/2

]
,

where we took into account that
∫∞
0 u1/2 exp(−au) du = √

π/2a3/2. Since the abso-
lute activity of the classical ideal gas is exp (βμ) = Nλ3

B/gV , we have

exp (βμ±) ≈ exp (βμ) ± exp(2βμ)

23/2
,

where μ is the chemical potential of the classical ideal gas whereas μ+ and μ− are
the chemical potentials of the fermion and boson gases, respectively. Upon inserting
the given data, we find that μ+ and μ− differ from μ by a mere 1.1%.

The equations of state forweakly degenerate fermion and boson gases are obtained

from the grand potentials �± = ∓β−1∑
j ln
(
1 ± exp

(
β(μ± − E j )

))
since � =

−pV . Thus

β�± = ∓ gV

4π2

(
2m

�2

)3/2 ∫ ∞

0
E1/2 ln

(
1 ± exp

(
β(μ± − E)

))
dE

= ∓ gV

4π2

(
2m

�2

)3/2 [2E3/2

3
ln
(
1 ± exp

(
β(μ± − E)

))∣∣∣
∞
0︸ ︷︷ ︸

=0

±2β

3

∫ ∞

0

E3/2 exp
(
β(μ± − E)

)
dE

1 ± exp
(
β(μ± − E)

)
]

≈ −gV

λ3
B

[
exp(βμ±) ∓ exp(2βμ±)

25/2

]
.

[We took into account that
∫∞
0 u3/2 exp(−au) du = 3

√
π/4a5/2.] By recalling that

gV/λ3
B = N exp(−βμ) we finally have

p±V = NkB T

[

exp
(
β(μ± − μ)

)∓ exp
(
β(2μ± − μ)

)

25/2

]
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≈ NkB T

[
1 ± exp (βμ)

25/2

]

= NkB T

[

1 ± N

25/2gV

(
h2

2πmkB T

)3/2
]

The pressure of a fermion gas is larger than the pressure of a classical gas at the same
number density and temperature whereas the pressure of the boson gas is smaller
than it; the magnitudes of the deviations are the same. Under the given conditions,
the helium pressure is smaller than the pressure of a hypothetical classical gas with
the same kilomolar mass and angular momentum by 1.19 × 105 Pa; the pressure of
the hypothetical classical gas is 8.28 × 106 Pa.

Problem 12.22.
At what temperature does liquid helium of a number density of 2.2 × 1028/m3

undergo Bose–Einstein condensation? The angular momentum of helium atoms is
0 and the kilomolar mass is 4 kg/kmol. How does the number of particles in the
ground state depend on temperature?

When we evaluate the partition function by representing the density of states with
a continuous function g(E) which is proportional to E1/2 for free particles with a
dispersion relation E = �

2q2/2m, we make an error in that the zero-energy level is
left out since g(E = 0) = 0. For fermions the error is irrelevant as the ground state
cannot be occupied by more than 2 j + 1 particles, j being their spin, and this finite
number is unimportant in the thermodynamic limit. In bosonic systems, on the other
hand, a macroscopic number of particles can be accommodated in the ground state
and thus the ground state must be included in the partition function. The total number
of particles is therefore split into two terms:

N = N0 + N> = 1

exp(−βμ) − 1
+
∑

E>0

1

exp
(
β(E − μ)

)− 1
.

Condensation is observed when the number of particles in the ground state N0 is
comparable to the total number of particles, i.e., N0 ∼ N . Thismeans that the number
of particles in states with E > 0 denoted by N> is significantly smaller than N .

For the present purpose it is sufficient to estimate N>. Since the energy of the
ground state is 0, the chemical potential must be smaller than or equal to 0 at any
temperature or else the occupation number of the ground state is negative, which
makes no sense. If we assume that μ = 0, we overestimate the number of particles
in states with E > 0. For particles with angular momentum 0 we have

N> ≤ V

4π2

(
2m

�2

)3/2 ∫ ∞

0

E1/2 dE

exp(βE) − 1

= V

4π2

(
2mkB T

�2

)3/2 ∞∑

n=1

∫ ∞

0
exp(−nu)u1/2 du



246 12 Grand Canonical Ensemble

= V

8π3/2

(
2mkB T

�2

)3/2 ∞∑

n=1

n−3/2

= 2.61 V

(
2πmkB T

h2

)3/2

,

where we introduced u = βE and we calculated the integral using the series expan-
sion by taking into account that

∑∞
n=1 n−3/2 = ζ(3/2) ≈ 2.61238. The total number

of particles in the states with E > 0 is evidently finite and it increases with temper-
ature so that at a low enough temperature, it will be smaller than the total number of
particles. As a result, the remaining N − N> particles must be in the ground state.
Thus we can define the critical temperature by requiring that N> = N . This gives

Tc = h2

2πmkB

(
N

2.61 V

)2/3

,

which yields 3.16 K for helium of a number density of 2.2 × 1028/m3. Thus N> =
N (T/Tc)

3/2 and N0 = N
[
1 − (T/Tc)

3/2
]
, which is valid only for T ≤ Tc; for T >

Tc the number of particles in the ground state is negligible (Fig. 12.7).

0 0.2 0.6 1.00.4

0.6

0.2

0.4

0.8

1

1.20.8
0

T T/ c

N N0/

Fig. 12.7 Relative number of particles in the ground state in an ensemble of free bosons versus
temperature

A more elaborate analysis demonstrates that the chemical potential of the Bose–
Einstein condensate below Tc is indeed equal to 0. Using this result, it is easy to
calculate the heat capacity of the condensate C . The particles in the ground state do
not contribute to the internal energy so that

〈E〉 = V

4π2

(
2m

�2

)3/2 ∫ ∞

0

E3/2 dE

exp(E/kB T ) − 1
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= 3

2
ζ

(
5

2

)
V

(
2πm

h2

)3/2

(kB T )5/2

and, consequently,

C = 5.03 V

(
2πmkB T

h2

)3/2

kB

= 1.92 NkB

(
T

Tc

)3/2

,

wherewe inserted ζ(5/2) ≈ 1.34149. The heat capacity of the condensate is depicted
in Fig. 12.8, which shows that close to the phase transition C exceeds the high-
temperature limit 1.5 NkB ; at the transition, it equals 1.92 NkB . We thus realize

0 0.2 0.6 1.00.4

0.5

1.5

2

1.20.8
0

T T/ c

C Nk/ B

1

Fig. 12.8 Temperature dependence of the heat capacity of the Bose–Einstein condensate (solid
line); the formula derived for T/Tc < 1 is combined with results from the literature for T/Tc > 1.
The high-temperature limit C = 1.5 NkB is indicated by the dashed line

that C(T ) is a non-monotonic function of temperature. A more accurate calculation
where the heat capacity of the non-condensed phase with μ < 0 is taken into account
shows that C(T ) peaks right at the phase transition.

Problem 12.23.
Show that a two-dimensional system of free bosons does not undergo Bose–Einstein
condensation!

In a Bose–Einstein condensate, the number of ground-level particles N0 =
[exp (−βμ) − 1]−1 must be comparable to the total number of particles N . Thus
we can estimate the chemical potential of the condensate by taking N0 ∼ N , which
gives

μ ≈ −kB T ln

(
1 + 1

N

)
≈ −kB T

N
,
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where we took into account that N � 1. Evidently, the chemical potential is of the
order of O(1/N ), which means that μ → 0 for large N . (This result was used in
Problem 12.22.) Now recall that in two dimensions, one can analytically calculate
the chemical potential of free bosons at any temperature as shown in Problem 12.16.
A detailed examination of the result obtained in Problem 12.16 shows that for T > 0
the chemical potential does not contain any term of order ofO(1/N ) which leads us
to conclude that in a two-dimensional system Bose–Einstein condensation does not
take place.

Problem 12.24.
A vessel with adsorbent-coated walls is filled with argon at 20 ◦C and 1 bar. Cal-
culate the fraction of the adsorption centers that are occupied if the binding energy
of an adsorbed atom is 1 meV! The kilomolar mass of argon is 40 kg/kmol and the
angular momentum of argon atoms is zero.

The grand canonical partition function for N0 independent adsorption centers
reads

exp (−β�) =
∑

N

exp
(
β
(
μ
∑

j

N j −
∑

j

N j E j
))

,

where the sums run over the possible numbers of adsorbed particles (0 and 1); the
energy of an adsorption center is equal to the binding energy −w if occupied and is
0 if empty. Therefore

exp (−β�) = [
1 + exp

(
β(μ + w)

)]N0
.

The average number of centers that are occupied is given by the Fermi–Dirac distri-
bution

〈N 〉 = −
(

∂β�

∂βμ

)

β

= N0

exp
(−β(μ + w)

)+ 1
.

In equilibrium, the chemical potential of the adsorbed atoms must be equal to the
chemical potential of the gas inside the vessel given by kB T ln

(
p/J T 5/2

)
. Here

J = (2 j + 1)

(
2πm

h2

)3/2

k5/2
B

is the chemical constant; m and j are the mass and the angular momentum of an
atom, respectively. Finally we have

〈N 〉
N0

=
[

J T 5/2

p
exp

(
− w

kB T

)
+ 1

]−1

= 1.09 × 10−7.



12 Grand Canonical Ensemble 249

Problem 12.25.
Two plates coated with different adsorbents are immersed in a gas. The binding
energies of atoms adsorbed on the first and on the second plate are equal to 1 meV
and 2 meV, respectively. At 150 K, 10% of all adsorption centers on the first plate
are occupied. What is the fraction of occupied adsorption centers on the second
plate?

The average occupancies of adsorption centers on the first and on the second plate
are

x1 = 1

exp
(−β(μ1 + w1)

)+ 1

and

x2 = 1

exp
(−β(μ2 + w2)

)+ 1
,

respectively. Here, −w1 < 0 and −w2 < 0 are the corresponding binding energies,
whereas μ1 and μ2 are the chemical potentials of the adsorbed atoms. The adsorbed
atoms on the two plates are in equilibrium mediated by the gas so that μ1 = μ2. This
gives

x2 = 1

1 + (
x−1
1 − 1

)
exp

(
β(w1 − w2)

) = 0.107 .

Problem 12.26.
A sealed cylindrical vessel with adsorbent-coated walls contains a monatomic gas
of kilomolar mass 40 kg/kmol at a temperature of 100 K. The vessel is rotated
about its symmetry axis at an angular frequency of 100 s−1. What is the ratio of the
relative magnitude of fluctuations of the number of adsorbed particles in a rotating
and a nonrotating vessel? The radius of the vessel is 1 m.

Like in Problem 12.24 the partition function for N0 adsorption centers (which can
be either occupied or empty) reads

exp (−β�) = [
1 + exp

(
β(μ + w)

)]N0 ;

here μ is the chemical potential of adsorbed atoms and the binding energy of
an adsorbed atom is −w < 0. The average number of adsorbed atoms is 〈N 〉 =
−(∂β�/∂βμ

)
β

= N0/
[
exp

(−β(w + μ)
)+ 1

]
,whereas thefluctuations of thenum-

ber squared are given by

σ2
N = 〈N 2〉 − 〈N 〉2 = −

(
∂2β�

∂(βμ)2

)

β

= N0 exp
(−β(w + μ)

)

[
exp

(−β(w + μ)
)+ 1

]2 .
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Thus the relative magnitude of fluctuations is

σN

〈N 〉 = exp
(−β(w + μ)/2

)

√
N0

.

In equilibrium, the chemical potential of the adsorbed atomsμ is equal to the chemical
potential of the atoms of the non-adsorbed gas μg . In ideal monatomic gas,

μg = kB T ln
( p

J T 5/2

)
,

where J is the chemical constant. In a rotating vessel, the gas is redistributed by the
centrifugal force: Close to the axis at r = 0 the pressure is decreased, whereas at the
wall at r = R it is increased. Since an increase of pressure gives rise to an increase
of the chemical potential of the gas at the wall, this implies an increase of occupancy
of the adsorption centers, because in equilibrium μ = μg(R). Now we need to find
the change of the pressure of the gas at the wall.

Once equilibrium is established in the rotating vessel, the macroscopic material
flow within it is zero, and thus the sum of the local chemical potential and of the
centrifugal potential energy must be constant: μg(r) − mω2r2/2 = const . Here ω is
the angular velocity, m = M/NA is the mass of a single atom; M is the kilomolar
mass of the gas and NA = 6 × 1026 kmol−1. This gives

dμg(r) = mω2r dr .

Since at a constant temperature dμg = kB T dp/p, we further obtain

dp

p
= mω2r dr

kB T
.

The pressure profile thus reads

p(r) = p(0) exp

(
mω2r2

2kB T

)
.

The integration constant p(0) is determined by the constant mass constraint which
implies that ∫ R

0
p(r)r dr = p0R2

2
.

The left-hand and the right-hand side correspond to a rotating vessel and to a vessel
at rest, respectively; p0 is the uniform pressure in the vessel at rest. Thus the pressure
at the wall is equal to

p(R) = p0
mω2R2/2kB T

1 − exp (−mω2R2/2kB T )
.
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With the given data we find that p(R) = 1.126 p0: The pressure at the wall is slightly
increased due to rotation. Now we denote the difference of the chemical potentials
at the wall in the rotating vessel and in the vessel at rest by �μg(R). Finally we
calculate the sought ratio which reads

δ = (σN /〈N 〉)ω
(σN /〈N 〉)0

= exp
(−β�μg(R)/2

) =
√

p0

p(R)
≈ 0.94 .

In a rotating vessel, more atoms are adsorbed on the wall than in a vessel at rest and
thus σN /〈N 〉 is smaller than in a vessel at rest.

Limiting cases: For mω2R2/2kB T → 0 (which corresponds to slow rotation, a
small vessel, or a high temperature) we obtain the expected result δ → 1. On the
other hand, for mω2R2/2kB T → ∞ (corresponding to fast rotation, a large vessel,
or a low temperature) p(R) → ∞ and δ → 0, since virtually all atoms are adsorbed.

Problem 12.27.
After argon is pumped into a piece of porous glass, a fraction of the gas is adsorbed
on the walls of the pores; the binding energy is 0.1 eV and the adsorbed atoms
are free to move across the surface. What is the fraction of the adsorbed atoms at
300 K? How does the pressure of the non-adsorbed gas depend on temperature and
volume? The kilomolar mass of argon is 40 kg/kmol, the angular momentum is 0;
the number of atoms in the sample is 2.4 × 1019; the total volume of the pores is
1 cm3 and their total surface area is 1000 m2.

We start by estimating the absolute activity of the system by assuming that they are
not adsorbed and by treating the atoms classically: In this case, the absolute activity
is given by exp

(
βμg

) = N
(
h2/2πmkB T

)3/2
/V and amounts to just 9.7 × 10−8.

Thus the occupancy of all energy levels is small and the non-adsorbed argon can be
approximated by a classical gas. In equilibrium, the absolute activity of the adsorbed
atoms will be small too and both subsystems—the adsorbed and the non-adsorbed
gas—can be described by the Maxwell–Boltzmann distribution.

Since the adsorbed argon atoms can move freely along the walls of the pores,
they behave like a two-dimensional classical ideal gas in a constant potential −w,
where −w < 0 is the binding energy. The energy of an adsorbed atom is given by
E = �

2q2/2m − w, and the total number of the adsorbed atoms is

Na = 2πm A

h2

∫ ∞

−w

exp
(
β(μa − E)

)
dE = 2πmkB T A

h2
exp

(
β(μa + w)

)
,

where we took into account that the spin degeneracy is 1; A is the total pore surface
area. Thus the chemical potential of the adsorbed atoms is

μa = kB T ln

(
Naλ

2
B

A

)
− w ;
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here λB = (
h2/2πmkB T

)1/2
is the thermal de Broglie wavelength. The chemical

potential of the Ng non-adsorbed atoms is equal to

μg = kB T ln

(
Ngλ

3
B

V

)
,

where V is the volume of the pores. In equilibrium μa = μg or

Na

A
exp

(
− w

kB T

)
= NgλB

V
.

Since the total number of atoms is constant, we further have Na + Ng = N and thus

Na = N

[
1 + V

AλB
exp

(
− w

kB T

)]−1

= 0.432 N = 1.04 × 1019

and Ng = N − Na = 0.568 N = 1.36 × 1019. In the end, we reevaluate the absolute
activities of the adsorbed and the non-adsorbed atoms with the revised input data
again: exp(μa/kB T ) = exp(μg/kB T ) = 5.5 × 10−8 � 1. This a posteriori justifies
the assumptions made at the beginning.

The equation of state for the non-adsorbed gas is obtained by starting with the
ideal gas law and inserting the volume- and temperature-dependent number of non-
adsorbed atoms Ng = N − Na . This gives

p = NgkB T

V
= NkB T

V
[
1 + (A/V )

(
h2/2πmkB T

)1/2
exp (w/kB T )

] .

Problem 12.28.
Gaseous argon at 27 ◦C and 1 bar is kept in a container with adsorbing walls. The
binding energy of an adsorbed atom is 1 meV. What is the change of the relative
magnitude of fluctuations of the energy of adsorbed atoms after a 100-fold increase
of pressure at a constant temperature? What is the entropy change per adsorption
center? The kilomolar mass of argon is 40 kg/kmol and its angular momentum is 0.

The adsorbed particle system is examined by considering the grand canonical
ensemble. We use N0 to denote the number of available adsorption centers and
−w < 0 is the binding energy. The average energy is obtained from the partition
function exp (−β�) (see Problem 12.24)

〈E〉 =
(

∂β�

∂β

)

βμ

= − N0w

exp
(−β(μ + w)

)+ 1
= −〈N 〉w ,

and the square of energy fluctuations reads

σ2
E = 〈E2〉 − 〈E〉2 = −

(
∂2β�

∂β2

)

βμ

= N0w
2 exp

(−β(μ + w)
)

[
exp

(−β(μ + w)
)+ 1

]2 .
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Thus we have
σE

〈E〉 = 1√
N0

exp

(
−β(μ + w)

2

)
.

After the pressure of the non-adsorbed argon is increased, its chemical potential μg

increases too. In equilibrium, itmust be equal to the chemical potential of the adsorbed
atoms, and thus the pressure increase translates into the change of occupancy of
the adsorption centers. One has μg(T, p) = kB T ln (p/J T 5/2), where J = (2 j +
1)(2πm)3/2k5/2

B /h3 = 6.56 × 105 Pa/K5/2 is the chemical constant, m = M/NA =
6.67 × 10−26 kg is the mass of an argon atom, and j is its angular momentum. For
a 100-fold increase of pressure from p′ to p we obtain

(σE/〈E〉)p

(σE/〈E〉)p′
= exp

(
β[μg(T, p′) − μg(T, p)]

2

)
=
√

p′

p
= 0.1 .

The entropy of the adsorbed atoms is equal to

S = 〈E〉 − F

T
= kB

(
β〈E〉 − β� − 〈N 〉βμ

)
,

where we divided the Helmholtz free energy F is into the grand potential � and the
Gibbs free energy G = μ〈N 〉. We already calculated the average energy 〈E〉 and the
average number of the occupied adsorption centers 〈N 〉, whereas the grand potential
is obtained by taking the logarithm of the partition function (Problem 12.24). Thus
we find that the entropy per adsorption center reads

S(T, p)

N0
= kB

{
− β[μ(T, p) + w]
1 + exp

(−β[μ(T, p) + w])

+ ln
(
1 + exp

(
β[μ(T, p) + w])

)}
,

whereas its change upon the increase of pressure from p′ to p is equal to �S/N0 =
[S(T, p) − S(T, p′)]/N0 ≈ 10−8 eV/K. The entropy is increased in the process; a
part of the increase comes from the change of entropy of the atoms that are already
adsorbed, whereas the rest originates in the adsorption of additional atoms.

Problem 12.29.
An ideal gas consisting of rod-like molecules is adsorbed at the walls of a container.
Upon adsorption, each molecule can attach to the wall in two different ways with
the same binding energy. Calculate this energy, given that at 104 Pa and 22 K the
relative occupancy of the adsorption centers is 1%! The kilomolar mass of the gas
is 2 kg/kmol and the characteristic rotator temperature of the molecules is 86 K;
the molecules are spinless. What is the relative occupancy of the adsorption centers
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at 2200 K if the pressure of the gas and the binding energy of the molecules remain
unchanged? The vibrational excitations of the molecules can be neglected.

The partition function of a system of N0 independent adsorption centers is given
by

exp (−β�) =
[
1 + 2 exp

(
β(μ + w)

)]N0

,

where −w < 0 is the binding energy and μ is the chemical potential of the adsorbed
molecules. The expression with the square brackets is the partition function of a
single adsorption center with three possible states: Empty and occupied, the latter in
two distinct ways. The average number of adsorbed molecules is

〈N 〉 = −
(
dβ�

dβμ

)

β

= 2N0

2 + exp
(− β(μ + w)

) .

The above expression can be inverted to express the binding energy

w = −μ − kB T ln

(
2

(
N0

〈N 〉 − 1

))

in terms of the relative occupancy 〈N 〉/N0 and μwhich remains to be determined. In
equilibrium, μ must be equal to the chemical potential of the molecular gas obtained
by calculating the corresponding partition function using the grand canonical for-
malism:

exp (−β�) =
∞∑

N=0

exp (βμN )

N ! h3N

[∫

V
dr
(∫ ∞

−∞
exp

(
−β p2

x

2m

)
dpx

)3

Zrot

]N

=
∞∑

N=0

1

N !

[
exp (βμ)

h3
V

(
2πm

β

)3/2

Zrot

]N

,

where

Zrot =
∞∑

j=0

(2 j + 1) exp

(
− j ( j + 1)

Trot

T

)

is the rotational partition function (Problem 11.5),m is themolecularmass, and Trot is
the characteristic rotator temperature. After recalling that � = −pV and exp (x) =∑∞

N=0(x N /N !), one finds that

μ = kB T ln

(
ph3

(kB T )5/2(2πm)3/2

1

Zrot

)
.

At the temperature of 22 K, which is low compared to Trot = 86 K, virtually no
rotational states are excited; hence the gas behaves as if it were monatomic. Thus
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Zrot ≈ 1 so that μ = −14 meV and w = 4 meV. On the other hand, at 2200 K the
system is in the high-temperature limit where many rotational states are occupied
and thus the discrete sum Zrot can be approximated by an integral like in a diatomic
gas, yielding Zrot ≈ T/Trot. Finally, at this temperature μ = −4.2 eV and 〈N 〉/N0 =
4.8 × 10−10.

Problem 12.30.
Upon adsorption from the gaseous phase onto a solid substrate, the argon atoms
perform in-plane oscillations around their respective adsorption centers. What is
the relative occupancy of the adsorption centers at a temperature of 140 K and a
gas pressure of 8 bar if the binding energy is 0.1 eV? Assume that the oscillations
of the adsorbed atoms can be described by the Einstein model of uncoupled two-
dimensional harmonic oscillators with a frequency of 5 × 1013 s−1! Calculate the
average energy of the bound atoms per adsorption center! The kilomolar mass of
argon is 39.9 kg/kmol; the angular momentum of the atoms is zero.

The energy of a two-dimensional harmonic oscillator is E(nx , ny) = �ω(nx +
ny + 1), where nx ≥ 0 and ny ≥ 0 are the quantum numbers. By adding this energy
and the binding energy of −w we obtain the total energy of an adsorbed atom. The
grand canonical partition function for N0 independent adsorption centers reads

exp (−β�) =
⎧
⎨

⎩
1 +

∞∑

nx =0

∞∑

ny=0

exp
(
β
[
μ + w − �ω(nx + ny + 1)

])
⎫
⎬

⎭

N0

.

The partition function of a single center (i.e., the expressionwithin the curly brackets)
consists of terms corresponding to all possible states of the site—vacant or occupied
in any possible oscillator state. Because the oscillations along the two Cartesian axes
are independent, the double sum can be factorized to yield

exp (−β�) =
{
1 + exp

(
β(w + μ)

)

×
( ∞∑

nx =0

exp

[
−β�ω

(
nx + 1

2

)])2}N0

=
{

1 + exp
(
β(w + μ)

)

4 sinh2 (β�ω/2)

}N0

.

The average number of adsorbed atoms is equal to

〈N 〉 = −
(

∂β�

∂βμ

)

β

= N0

1 + 4 sinh2 (β�ω/2) exp (−βw)J T 5/2/p
,
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where J and p stand for the chemical constant of a monatomic gas (see Prob-
lem 12.24) and vapor pressure, respectively. Finally 〈N 〉/N0 = 1.55 × 10−3.

The average energy of the adsorbed atoms is given by

〈E〉 =
(

∂β�

∂β

)

βμ

= 〈N 〉
[
�ω coth

(
β�ω

2

)
− w

]
,

where the oscillator term and the binding term are clearly separated. The average
energy per adsorption site is 〈E〉 = −9.7 × 10−5 eV and is negative: The oscillator
term is smaller than the binding term so the atoms indeed remain bound.

Problem 12.31.
In a simple lattice gas model, each unit cell of a cubic lattice can be either occupied
by a particle or empty. Two occupied neighboring cells carry an energy of −w

representing an attractive interaction between the particles. Find the critical point
of the vapor–liquid coexistence! Hint: Search for the similarities with the Ising model
of a ferromagnet and analyze it using the mean-field approximation!

Each unit cell can be either occupied and empty, hence the analogy with the Ising
model where the spin variable si can take only one of the two values ±1/2. By
assigning si = +1/2 to the occupied cells and si = −1/2 to the empty cells, we
can express the number of particles in a given cell by ni = si + 1/2. Only pairs of
occupied cells contribute to the energy

E = −w
∑

i, j neighbors

ni n j

= −w
∑

i, j neighbors

si s j − zw

2

N0∑

i=1

si − N0
zw

8
,

where z is the coordination number—in a simple-cubic lattice, z = 6—and N0 is the
number of cells. The total number of particles in the system

N =
N0∑

i=1

(
si + 1

2

)
≤ N0

is not fixed in advance, and thus we can apply the grand canonical formalism. The
statistical weight in the partition function contains

E − μN = −w
∑

i, j neighbors

si s j −
( zw

2
+ μ

) N0∑

i=1

si − N0

( zw

8
+ μ

2

)
,

which can be compared with the Ising Hamiltonian (Problem 11.12). In the above
expression, the first term is analogous to the exchange interaction between atomic
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magnetic dipole moments; we notice that in the lattice gas w plays the role of the
exchange integral J in the Ising model. The second term is analogous to the coupling
with an externalmagnetic field; fromhere it follows thatμ + zw/2 corresponds to the
magnetic flux density. The remaining terms are independent of si and thus irrelevant.

The lattice gas model analog of the magnetization M (and thus of the order
parameter) is the particle “density” N/N0. The paramagnetic phase with M = 0
corresponds to a supercritical fluid with an average occupancy of the cells of 1/2.
The analogs of the ferromagnetic phases withM > 0 andM < 0 are the liquid and
the gas phase; in the former, more than half of the cells are occupied, and in the latter
more than half of them are empty. In zero field, the mean-field approximation in the
Ising model gives a critical temperature of z J/4kB (Problem 11.12). We conclude
that the critical temperature of the lattice fluid is

Tc = zw

4kB
,

whereas the critical value of the chemical potential of the two phases is

μc = − zw

2
.

For μ > μc (i.e., for μ + zw/2 > 0), more than half of the cells are occupied even
at T > Tc. (In the Ising model this corresponds to matter in a magnetic field where
magnetization is nonzero even in the paramagnetic phase.) In this case, a decrease of
temperature brings the system from the supercritical fluid state directly to the liquid
phase without a phase transition. The opposite is true for μ < μc; in this case, the
system continuously transforms into the gas phase. Only for μ = μc the density of
the supercritical fluid is just right such that upon cooling, the system first hits the
critical point and then reaches the liquid–gas coexistence.

A number of other problems can be mapped onto the Ising model. One of the
examples is the binary mixture of particles A and B with repulsive interactions
between the unlike particles. Above the critical temperature, the A and B components
are well-mixed, whereas below Tc they phase-separate because of the prevailing
repulsive interactions.



Chapter 13
Kinetic Theory of Gases

Problem 13.1.
Calculate the average speed of particles in an ideal gas! The velocity is characterized
by the Maxwell–Boltzmann distribution.

The average speed of particles of mass m1 is equal to

〈v〉 =
∫ ∞

0

(
βm1

2π

)3/2

exp

(
−βm1v

2

2

)
4πv3dv =

√
8kB T

πm1
.

It is instructive to compare it to the speed of sound

c =
√

κkB T

m1
= 〈v〉

√
κπ

8
,

whereκ = cp/cV is the ratio of heat capacities of the gas. Since
√

κπ/8 < 1, c < 〈v〉.
This result makes sense: A perturbation cannot propagate faster through a medium
than its building blocks. At 300 K, the average velocity of molecules in oxygen
with M = 32 kg/kmol and κ = 1.4 is 〈v〉 = 445 m/s and the speed of sound is
c = 330 m/s.

Problem 13.2.
A narrow jet of vaporized silver at 800 ◦C is forced through a horizontal nozzle and
hits a screen at a distance of 5 m. What is the distribution of the thickness of the
silver deposit on the screen? Where is its center of mass? At what point is the deposit
thickest?

We begin by assuming that the mean free path of the atoms in the jet is much
larger than the distance between the nozzle and the screen denoted by l. In this
case, collisions between the atoms can be neglected and since the vapor jet is well-
collimated as well as narrow, each atom in the jet can be regarded as a projectile
launched in a horizontal direction. The spot on the screen hit by an atom lies y =
© Springer Nature Switzerland AG 2019
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gt2/2 below the horizontal line passing through the nozzle; here g is the gravitational
acceleration and t = l/vx is the time of flight. The horizontal component of the
velocity vx remains constant during the flight. For a collimated and narrow jet, we
have vx ≈ v, where v is the initial velocity. Thus, the silver deposit on the screen is
smearedmainly because of spread of the initial velocities of the atoms. The thickness
of the deposit in a narrow horizontal strip of width dy is proportional to the number of
particles dφ hitting the strip per unit time. Hence, the probability distribution sought
is

w(y) = 1

φ

∣∣∣∣dφdy

∣∣∣∣ = 1

φ

∣∣∣∣dφdv
dv

dy

∣∣∣∣ = 1

φ

dφ

dv

v3

gl2
,

where φ = ∫
dφ is the total particle deposition rate. In a vapor of number density n,

the fraction of atoms moving at a velocity v is dn/n = w(v) dv = w(v)v2 dv ��,
where �� is the solid angle of the jet and v = |v|. Thus dφ = nvxw(v)v2 dv A��,
A being the surface area of the cross section of the nozzle. The velocity distribution
w(v) is Maxwellian:

w(v) =
(

βm1

2π

)3/2

exp

(
−βm1v

2

2

)
,

where m1 = M/NA is the mass of a single atom; M = 107.9 kg/kmol. Since vx ≈ v

we have dφ = nw(v)v3 dv A��. Hence the number rate of atoms hitting the screen
is given by

φ = n A��

∫ ∞

0
w(v)v3 dv = n A��√

2βm1π3
,

whereas the probability distribution of the atom deposition coordinate y (which is
proportional to the local thickness of the deposit) reads

w(y) = (βm1gl2)2

16y3
exp

(
−βm1gl2

4y

)

(Figure 13.1). The center of mass of the deposit is located at

〈y〉 =
∫ ∞

0
w(y)y dy = βm1gl2

4
= 0.744 mm

below the horizontal line through the nozzle. The locus of the thickest deposit is
determined by dw(y)/dy = 0 and is at

y0 = βm1gl2

12
= 0.248 mm .
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Fig. 13.1 Probability distribution w(y) is proportional to the thickness of the silver deposit. If an
atom was to hit the screen at y = 0, its velocity should be infinite; thus w(0) = 0. On the other
hand, the atoms hitting the screen at y → ∞ must be very slow and since their number is small,
w(y → ∞) approaches 0 too

Problem 13.3.
The flux of thermal neutrons in the core of a nuclear reactor is 4 × 1016 m−2s−1.
What is the number density of the neutrons? What is their partial pressure? The
distribution of velocities is Maxwellian at a temperature of 300 K.

We consider neutrons with a velocity component along the x axis equal to vx

that pass through an imaginary frame of area A oriented perpendicular to the x axis.
(In the same manner one can estimate, e.g., the maximum rate of evaporation or
condensation at a liquid–vapor interface, or the flux of a rarefied gas escaping from a
vessel into vacuum.) Within a time interval �t , all neutrons located within a cuboid
of a base of surface area of A and a height of vx �t adjacent to the frame will pass
through the frame (Fig. 13.2). The number of these neutrons is n Avx �t , where n is
the number density. Now recall that the neutron velocities are distributed rather than
fixed; thus the total number of neutrons traveling through the frame along the x axis
is given by

Fig. 13.2 Flux of particles through a frame of surface area A: The number of particles with a normal
velocity component vx that pass through the frame in a time interval �t is equal to the number of
particles within the shaded region. The white arrows are the paths of three selected particles that
are among the last ones to cross the frame
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N =
∫ ∞

0
n Avxw(vx ) dvx �t = j A �t ,

where j is the flux of the neutrons and

w(vx ) =
(

βm1

2π

)1/2

exp

(
−βm1v

2
x

2

)

is the distribution of the component of the velocity along the x axis vx . The flux
of neutrons with vx > 0 through the frame is counterbalanced by the flux in the
opposite direction with vx < 0; as they are equal on average, the net macroscopic
flux vanishes. The flux defined above pertains only to the flow through the frame
in one direction—as if the neutrons effused through a hole in a vessel into vacuum.
Therefore the above integral goes only over vx > 0 and we have

j = n√
2πβm1

= n〈v〉
4

,

where j is expressed in terms of average speed 〈v〉 = (8/πβm1)
1/2 (Problem 13.1).

The numerical results are 〈v〉 = 2510 m/s and n = 6.37 × 1013 m−3.
Alternatively, the expression for the flux of the particles can be derived in spherical

coordinates where the polar angle θ is measured with respect to the x axis and the
integral over the direction of the velocity is carried out only over one hemisphere of
the velocity space. In this case, the number of neutrons at a velocity v passing through
the frame during a time interval of �t is equal to n Av cos θ �t . By integrating over
the magnitude of the velocity and all allowed directions, we obtain

N =
∫ ∞

0
nw(v)v3dv

∫
�

A �t cos θ 2π sin θ dθ = j A �t ,

so that

j = n

(
βm1

2π

)3/2 ∫ ∞

0
exp

(
−βm1v

2

2

)
v3 dv

∫ π/2

0
2π cos θ sin θ dθ

= n〈v〉
4

.

When calculating the pressure, we consider the collisions of the neutrons with the
wall and we estimate the impulse of the force F x exerted by the neutrons in the
direction perpendicular to the wall. Upon each collision, the normal component of
the linear momentum of a neutron changes by 2m1vx . During a time interval of�t , a
wall of surface area A is hit by n Avx �t neutrons with a normal velocity component
of vx . Thus, the combined change of the linear momenta of all neutrons with vx > 0
reads
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∫ ∞

0
2m1n Av2

xw(vx ) dvx �t = Fx �t,

and is equal to the impulse of the force. The pressure reads

p = Fx

A
= m1n

∫ ∞

−∞
v2

xw(vx ) dvx = nm1〈v2
x 〉 = nkB T .

In the last step, we used the equipartition theorem m1〈v2
x 〉/2 = kB T/2 and we

obtained the ideal gas law. This is not surprising: We neglected the interactions
between neutrons and the origin of the pressure is entirely kinetic. The numerical
result for the pressure is p = 2.64 × 10−7 Pa.

Problem 13.4.
A spherical vessel of a volume of 10dm3 contains water vapor at 20 ◦Cand 10mbar.
At some point, a small patch of the wall is cooled so that all molecules that hit it
remain trapped at the wall. What is the surface area of the cooled patch of the wall
if the vapor pressure is to drop to 0.1% of its initial value within one second? The
vapor temperature is kept constant. The kilomolar mass of water is 18 kg/kmol.

The cold patch of the wall behaves like a hypothetical opening which allows the
water molecules to escape from the vessel into vacuum. The molecular flux through
the opening is equal to j = n〈v〉/4, where n is the number density of the molecules,
〈v〉 = √

8kB T/πm1 is their average speed, and m1 = M/NA is the mass of a single
molecule. During a time interval dt the number of free molecules inside the vessel
N decreases by

dN = − j A0 dt = −1

4
n〈v〉A0 dt ,

where A0 denotes the surface area of the cold patch. The pressure within the vessel
is described by the ideal gas law p = nkB T , where n = N/V and V is the vessel
volume. By expressing dN and n in terms of p we obtain

dp

p
= −〈v〉A0

4V
dt .

Now we integrate the left-hand side of this result over pressure from p′ to p and the
right-hand side over time:

ln

(
p′

p

)
= 〈v〉A0t

4V
.

The pressure decreases exponentially with time. To invoke a pressure decrease to
one per mill of the initial value within 1 s, the surface area of the cold patch must be
equal to

A0 = 4V

〈v〉t ln
(

p′

p

)
= 4.7 cm2
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The total surface area of the vessel can be deduced from its volume: Its radius is equal
to R = (3V/4π)1/3 = 13.4 cm and the surface is A = 4πR2 = 0.224 m2. Thus the
cold patch is just a small fraction of total surface area since A0/A = 2.1 × 10−3.
This provides a posteriori justification of our ignoring the curvature of the wall.

Problem 13.5.
A one-liter container with a mass of only 10 g located in the outer space is filled
with helium at a temperature of 100 K and a pressure of 10 Pa. The container has
a small hole with an area of 0.01 mm2, which is initially closed. At some point, the
hole is carefully opened by an astronaut and the container begins to move. Calculate
the speed of the container with respect to the astronaut 1 minute after the hole is
opened! What is the highest speed of the container? The container is equipped with
a tiny heater that maintains the temperature of the gas constant. The kilomolar mass
of helium is 4 kg/kmol.

The container accelerates because of the reaction force equal to F = p A, where
A is the area of the hole and p = nkB T is the pressure of the gas. The acceleration
is expected to be small; therefore we can neglect the inhomogeneities of the gas due
to acceleration. Furthermore, the mass of the gas can be neglected with respect to
the proper mass of the container m. In the coordinate system of the astronaut (which
approximately coincides with the inertial center-of-mass system), the equation of
motion reads

m du = F dt = n(t)kB T A dt ,

where u is the velocity of the container with respect to the astronaut and n(t) the
number density of gas in the container. In a time interval dt , dN = V dn helium
atoms escape from the container (V being its volume) so that dN = − j A dt =
−(n〈v〉/4)A dt ; 〈v〉 is the average speed of the atoms (Problem 13.1). Like in Prob-
lem 13.4 we realize that

n(t) = p′

kB T
exp

(
−〈v〉At

4V

)
,

where p′ is the initial pressure of the gas, and the equation of motion can be recast
as

u(t) = p′ A
m

∫ t

0
exp

(
−〈v〉At

4V

)
dt = 4p′V

m〈v〉
[
1 − exp

(
−〈v〉At

4V

)]
.

A minute after the hole is opened, the velocity of the container is 0.57 mm/s; after a
long time it approaches 5.5 mm/s. We inserted 〈v〉 = (8kB T NA/πM)1/2 = 726 m/s.

We now estimate the mean free path of the helium atoms in the container:

〈l f 〉 = 1

4πr21n
� kB T

4πr21 p′ ≈ 1.1 mm .
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Here we estimated the atom size by r1 ≈ 10−10 m. The mean free path exceeds the
diameter of the hole ∼ √

A = 0.1 mm. This means that the flow through the hole is
not macroscopic and that the interatomic collisions can be neglected.

Problem 13.6.
A thermostat contains a vessel of a volume of 2 l divided by a wall into two iden-
tical chambers. In the wall there is a hole, that is sealed at the beginning. Ini-
tially one chamber is evacuated, whereas the other one contains air at a pressure
of 10−3 mbar. How long does it take for the pressures in the two parts to become
approximately equal? The temperature is 300 K and the cross-sectional area of the
hole is 0.01 mm2.

Since the density of the gas is low, the mean free path is much larger than the
hole diameter ∼ √

A and hence there is no macroscopic flow through the hole.
For the number of molecules in chamber 1 we have dN1/dt = −Aj1→2 + Aj2→1,
where j1→2 = n1〈v〉/4 is the particle flux from chamber 1 to chamber 2, and j2→1 =
n2〈v〉/4 the correspondingflux in the opposite direction.At any time, the total number
of molecules has to be equal to the initial number of molecules in chamber 1, N1(t) +
N2(t) = N so that n1(t) + n2(t) = N/V ; here V is the volume of either chamber.
Therefore

dn1

dt
= − A〈v〉

2V
n1 + A〈v〉N

4V 2
.

The solution of this differential equation is n1(t) = C1 exp(−t/τ ) + C2, where τ =
2V/A〈v〉. The initial condition is n1(0) = N/V and after a long time, one must have
n1 = n/2V so that C1 = C2 = N/2V . Hence

n1(t) = N

2V

[
1 + exp

(
− t

τ

)]
,

and since n1(t) + n2(t) = N/V

n2(t) = N

2V

[
1 − exp

(
− t

τ

)]
.

Strictly speaking, the pressures never equalize, but there still exists a well-defined
relaxation time of pressure relaxation given by τ = 2V/A〈v〉 = 428 s. After 3τ ≈
21 min the chamber pressures differ from their final equilibrium values by less than
5%.

Problem 13.7.
A vessel contains a 1 : 1 mass-ratio mixture of hydrogen and helium at 0.01 mbar
and 20 ◦C. A small hole is drilled into the wall of the vessel to let the mixture leak
into an adjacent chamber where a high vacuum is maintained by pumping. What is
the helium concentration in this chamber?

The pressure of the gas in the chamber is small; therefore, the reverse chamber-
to-vessel gas flux can be neglected. In this case, the ratio of the number densities



266 13 Kinetic Theory of Gases

of the helium atoms and hydrogen molecules (n1 and n2, respectively) is equal to
the ratio of the corresponding fluxes: n1/n2 = j1/j2. The fluxes, in turn, depend on
the particle number densities inside the vessel n′

i as well as on the corresponding
average particle speed and read ji = n′

i 〈vi 〉/4. Here 〈vi 〉 = √
8kB T/πmi , where mi

is the mass of either hydrogen molecule or helium atom. Hence

n1

n2
= n′

1

n′
2

√
m2

m1
= 1

2
√
2

,

where we took into account that since m1 = 2m2, equal mass fractions of helium and
hydrogen in the vessel correspond to n′

1/n′
2 = 0.5. Hence, the mass fraction ratio of

the two components of the mixture inside the chamber is twice the ratio n1/n2, i.e.,
1/

√
2, and the helium concentration is

x1 = m1/m2

1 + m1/m2
= 0.414 .

A similar procedure is used in isotope separation.

Problem 13.8.
A vessel filled with rarefied oxygen is divided into two chambers by a porous wall.
In the left and the right chamber, constant temperatures of 27 ◦C and 30 ◦C are
maintained, respectively. What is the pressure difference between the chambers if
the pressure in the left one is 10 Pa? What happens if the chambers are additionally
connected by a thick tube? Calculate the particle flow rate through the tube if the
total cross section of all pores is 10−4 m2!

The vessel with a porous wall is depicted in Fig. 13.3. We denote the pressure
and the temperature in the left chamber by p1 and T1, respectively, whereas those in
the right chamber are p2 and T2. The diameter of the pores is much smaller than the
mean free path of the oxygen molecules. In the stationary state, the particle fluxes
between the chambers are equal so that n1〈v〉1/4 = n2〈v〉2/4. Due to the different
temperatures in the chambers, the averagemolecular speeds 〈v〉1,2 = √

8kB T1,2/πm1

(here m1 is the mass of the oxygen molecule) are different too and so are the number
densities of the gases n1,2 = p1,2/kB T1,2. Thus

p
T
1

1

p2
2T

p
T2

p
T1

Fig. 13.3 Vessel with a porous internal wall without (left) and with a thick connecting tube (right)
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p1

p2
=

√
T1

T2
≈ 0.995 .

The pressure difference p2 − p1 is equal to 0.05 Pa. The phenomenon where a
temperature difference induces a difference in pressure is referred to as the thermo-
mechanical effect.

If the chambers are connected by an additional tube of a diameter much larger
than the mean free path, the initial pressure difference causes a net macroscopic gas
flow through the tube. This flow does not cease even after a mechanical equilibrium
is established and the pressures p1 and p2 are equal because the flow through the
porous wall is inversely proportional to

√
T . As a result, the flow from the hot to

the cold chamber is smaller than in the opposite direction. (Phenomenologically, this
effect is similar to the thermoelectric effect where a temperature difference induces
a stationary electric current.) At a pressure of p = 10 Pa, the total particle flow rate
through the wall (and through the tube in the opposite direction) is equal to

φ = p A√
2πm1kB

(
1√
T1

− 1√
T2

)
= 1.33 × 1017 s−1 ,

where A is the total cross section of all pores.

Problem 13.9.
A nondegenerate two-dimensional electron gas is subjected to an external poten-
tial given by φ(x, y) = c2(x2 + y2) − c4(x2 + y2)2. In thermal equilibrium at 5 ×
103 K, most of the electrons are trapped inside the potential well but some of
them manage to escape. Estimate the escape probability per unit time! Use c2 =
10−2 eV/nm2 and c4 = 10−6 eV/nm4!

Because of the rotational symmetry of the potential shown in Fig. 13.4, we write
the potential as φ(r) = c2r2 − c4r4, where r = √

x2 + y2. The maximum of the

Fig. 13.4 Sketch of the potential φ(x, y): The origin of the coordinate system is at the bottom of
the well; only electrons that are fast enough can escape
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potential corresponds to dφ(r)/dr = 0 and is located at r0 = (c2/2c4)1/2. Only elec-
trons that are sufficiently fast can escape across the maximum. In a time interval dt ,
a total of 2πr0n Avr dt electrons with a radial velocity component vr > 0 can escape
(n A denotes the local electron density per unit surface), the total escape rate being

dN

dt
= 2πr0n A(r0)

∫ ∞

0
w(vr )vr dvr = r0n A(r0)

√
2π

βm1
.

Here w(vr ) = (βm1/2π)1/2 exp (−βm1v
2
r /2); m1 stands for the mass of electron.

The velocity distribution is Maxwellian regardless of the external potential, but
the electron density n A(r) = n A(0) exp

(−βφ(r)
)
depends on position. To estimate

dN/dt , one must find the density of the electrons at the maximum of the potential
n A(r0)which depends on the total number of electrons N = ∫ ∞

0 n A(r) 2πr dr . As the
electrons are mostly located in the potential well close to the origin, exp

(−βφ(r)
)

can be expanded:

exp
(−β

(
c2r

2 − c4r
4
)) ≈ (

1 + βc4r
4
)
exp

(−βc2r
2
)
.

By integrating by parts we obtain

N = πn A(0)

βc2

(
1 + 2c4

βc22

)

and

n A(r0) = Nβc2
π

(
1 + 2c4/βc22

) exp
(

−βc22
4c4

)
.

Thus the escape probability per unit time is given by

1

N

dN

dt
≈

√
βc32

πm1c4
exp

(
−βc22
4c4

)
= 2.4 × 10−11 s−1 .

At the end, we took into account that 2c4/βc22 � 1.

Problem 13.10.
The surface area of the mantle of a Dewar flask is 5 dm2. The walls of the mantle are
separated by a 3 mm-thick gap filled by air at 10−3 mbar. The flask contains ice at
0 ◦C, whereas the outside temperature is 20 ◦C. Estimate the mass of ice that melts
in one hour! What is the result if the air pressure is increased 104 times? Estimate
the mean free path of the molecules in the two cases! The kilomolar mass of air is
29 kg/kmol.

We first calculate the molecular mean free path in the layer of air at 10−3 mbar:

〈l f 〉 = kB T

4πr21 p
≈ 7.5 cm ,
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where we approximated the radius of the molecules by r1 ≈ 0.2 nm and we inserted
T = 0 ◦C. Since the mean free path is significantly larger than the width of the
gap between walls of the mantle, the intermolecular collisions in the layer are rare
and thus there exists no continuous temperature profile. We further assume perfect
accommodation of each molecule when it hits any of the two walls such that the
molecule is thermalized to the temperature of the wall. Under such circumstances
the heat flux carried from the wall by the molecules is given by

jQ = n
∫ ∞

0
w(v)E(v)v3 dv

∫ π/2

0
2π cos θ sin θ dθ ;

the angle θ ismeasuredwith respect to to the normal of thewall. The above expression
is analogous to that used in the derivation of the pressure exerted on a wall (Prob-
lem 13.3), except that the transmitted linearmomentum is replaced by the transmitted
energy E(v). In a monatomic gas, this energy consists of the translational kinetic
energy E(v) = m1v

2/2, and thus

jQ =
(

βm1

2π

)3/2 nm1

2

∫ ∞

0
exp

(
−βm1v

2

2

)
v5 dv

×
∫ π/2

0
2π cos θ sin θ dθ

= nkB T

√
2kB T

m1π
= n〈v〉

2
kB T ,

where the result is expressed using the average speed 〈v〉 and m1 = M/NA. An
alternative (but approximate) approach would be to estimate jQ by multiplying the
particle flux j = n〈v〉/4 by 3kB T/2 (borrowed from the equipartition theorem). The
functional dependence of the thus derived jQ on temperature and density is correct
but the numerical prefactor is wrong because of 〈v〉〈v2〉 �= 〈v3〉.

However, air is a diatomic gas and its internal energy is due to both translational
and rotational motion. Therefore, we have E(v) = m1v

2/2 + Er , where Er is the
rotational energy which is independent of the translational motion. For this reason,
the rotational contribution to jQ is simply given by (n〈v〉/4)〈Er 〉. As a diatomic
molecule has two rotational degrees of freedom, the equipartition theorem gives
〈Er 〉 = kB T and the total heat flux from the wall is equal to

jQ = n〈v〉
2

kB T + n〈v〉
4

〈Er 〉 = 3n〈v〉
4

kB T = 3p〈v〉
4

.

Here we used the ideal gas law.
In the stationary state, the number fluxes of the molecules from wall to wall in the

flask mantle are equal, and so a given n〈v〉/4 implies jQ ∝ T . Hence the heat flux
from the hot wall to the cold one is larger than that in the opposite direction. The
difference of the fluxes
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� jQ = jQ(T + �T ) − jQ(T ) = 3n〈v〉
4

kB�T = 2.4 W/m2

is warming up the contents of the flask. It is proportional to the density of the gas
and to the temperature difference of the walls but it does not depend of the width of
the gap between the walls. (When calculating 〈v〉 = √

8kB T/πm1 and n = p/kB T
we used the mean temperature of 10 ◦C and we obtained 〈v〉 = 454 m/s and n =
2.56 × 1019/m3.) The mass of ice that melts in 1 hour is

� jQ At

q f
= 1.3 g ;

here A is the surface area of the walls of the flask and q f is the heat of fusion.
If the air pressure is increased by a factor of 104, the mean free path becomes 104

times shorter and is equal to 〈l f 〉 ≈ 7.5 μm, which is much less than the width of
the gap between the walls. The intermolecular collisions are now frequent enough
and an equilibrium temperature profile T (z) is established in the layer of air, the
temperature being a linear function of the distance from a reference wall z. The heat
flux emitted by the hot wall still exceeds that emitted by the cold wall but nowwe can
assume that at a given z, molecules with an average energy of 5kB T (z)/2 originate
at a location where they last collided with another molecule, that is at z ± 〈l f 〉:

� jQ = jQ(T + �T ) − jQ(T − �T )

= n〈v〉
4

[
5kB

2

(
T + dT

dz
〈l f 〉

)
− 5kB

2

(
T − dT

dz
〈l f 〉

)]

= 5〈v〉kB

16πr21

dT

dz
= 104 W/m2 .

When we evaluated 〈v〉, we again inserted the mean temperature. The resulting total
heat flux is proportional to the temperature difference between thewalls and inversely
proportional to the wall-to-wall distance but independent of the density of the gas. At
the larger pressure, 56 g of ice melt in 1 hour, which is much more than at 10−3 mbar.

Problem 13.11.
A one-liter thermally insulated vessel contains oxygen at 27 ◦C and
0.01 mbar. The vessel is equipped with a valve of a diameter of 0.1 mm which
is opened. How long does it take for the oxygen temperature to drop to a half of the
initial value? The vessel is placed in vacuum. What is the temperature of the oxygen
in the vessel after half of it has escaped?

The diameter of the valve is much smaller than the mean free path of the oxygen
molecules; therefore, there is no macroscopic flow of molecules leaving the vessel.
The temperature of the gas decreases with time because on average, the molecules
that manage to escape are faster and carry more energy than those that remain in the
vessel. The change of the internal energy is given by cV d(mT ), where m and T stand
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for the instantaneous mass and temperature of the gas inside the vessel, respectively,
and cV is the heat capacity at constant volume. The internal energy changes both
because of the temperature decrease and because of the mass loss. The expression
for the energy flow rate escaping the vessel is borrowed from Problem 13.10. The
first law of thermodynamics for the gas remaining in the vessel reads

cV d(mT ) = −3

4
n〈v〉kB T A dt ,

where A is the surface area of the valve. We write m = nV M/NA, where V is
the vessel volume and n is the instantaneous number density of the gas, and we
take into account that cV = 5kB NA/2M . After some reaarangements, the left-hand
side reduces to d(nT ) = n dT + T dn where dn = −(n〈v〉/4V )A dt like in Prob-
lem 13.4. We are left with

dT = −〈v〉AT

20V
dt .

Recall that the average speed of the oxygen molecules depends on the temperature:
〈v〉 = √

8kB T/πm1, where m1 = M/NA is the mass of the molecule. Finally

∫ T ′/2

T ′

dT

T 3/2
= − A

10V

√
2kB

πm1

∫ t

0
dt .

After integration, we find that the temperature drops to a half of the initial value T ′
after a time of

t = 20
(√

2 − 1
) V

A

√
πm1

2kB T ′ = 1.32 h .

To calculate the temperature after half of the gas has escaped, the heat flux jQ must
be expressed in terms of the particle flux j which, in turn, can be related to the mass
flux jm : jQ = 3kB T j and j = jm/m1 = −(m1A)−1dm/dt . These two results are
now inserted into the above form of the first law to yield

dT

T
= 1

5

dm

m
.

After half of the gas has escaped, the temperature of the gas in the vessel is equal
to 2−1/5T ′ = 0.870 T ′ = 261 K. The above expression represents the equation of
an (irreversible) adiabatic process. Note that it differs from the reversible adiabatic
relation dT/T = (2/5) dm/m which follows from the equation of state and the first
law of thermodynamics for a diatomic ideal gas escaping from a vessel through
a large hole. The two relations disagree because the latter holds in cases where a
macroscopic flow from a vessel can be observed, which does not apply here because
the valve is too small.
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Problem 13.12.
Calculate the Doppler broadening of a spectral line emitted by rarefied helium at
501.6 nm! The temperature is 300 K. Compare the result with the broadening due
to collisions between atoms at the same temperature and 1 bar! The radius of the
helium atom is 0.122 nm.

We consider a spectral line at a frequency of ν0; the natural line width can be
neglected compared to the two types of broadening of interest. The motion of atoms
in a gas leads to the Doppler effect upon emission of light: The atoms that move away
from the observer emit at a frequency lower than ν0 and those moving toward the
observer emit at a frequency higher than ν0. If the component of the velocity in the
direction of observation vx is much smaller than the speed of light c, the measured
frequency is given by ν(vx ) = ν0(1 + vx/c). This implies that

vx = c

(
ν

ν0
− 1

)
.

The frequency distribution wν(ν) is deduced from the probability distribution over
the component of the velocity along the x axis denoted by w(vx )

wν(ν) = w(vx )
dvx

dν
= c

ν0

(
βm1

2π

)1/2

exp

(
−βm1c2(ν − ν0)

2

2ν2
0

)
.

The Doppler line width can now be extracted from the argument of the exponential
function above and is given by

�νD ≈ ν0

√
2kB T

m1c2
= 2.22 × 109 s−1.

Here, ν0 = c/λ0 withλ0 = 501.6 nmandm1 = M/NA with M = 4 kg/kmol. Hence,
the corresponding relative line width is equal to �νD/ν0 ≈ 3.71 × 10−6, which is
roughly 100 times larger than the natural line width.

Theundisturbed emissionof light by an atom takes place only between consecutive
collisions with other atoms, which also results in a spectral line broadening. The
time between two collisions is estimated as the ratio of mean free path and average
velocity:

τ = 〈l f 〉
〈v〉 = 1

4r21 p

√
kB T m1

8π
= 1.76 × 10−10 s ,

where r1 is the atomic radius and p is the pressure of the gas. The line width due to
collisions �νT is estimated from the relation

�νT ∼ (2πτ )−1 = 9.06 × 108 s−1.
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The corresponding relative width is �νT /ν0 ≈ 9.08 × 10−7. Thus the Doppler
broadening is dominant in the spectrum of helium.

Problem 13.13.
A 3 mm-thick layer of air at 0 ◦C and 10−3 mbar is confined between two large par-
allel plates. What is the shear stress when the plates move in opposite directions with
relative velocity 1 cm/s at a constant separation? How does the result change when
the air pressure is increased 104 times? The kilomolar mass of air is 29 kg/kmol.

The mean free path at 0 ◦C and 10−3 mbar is about 7.5 cm, which is much more
than the distance between the plates. In this case, the intermolecular collisions are
not frequent enough to establish an equilibrium velocity profile between the plates.
The shear stress—the flux of linear momentum—is thus obtained by considering the
molecular collisions with the moving plates: The molecules originating from the first
plate slow down the second plate and vice versa. We assume perfect accommoda-
tion, which means that the average tangential velocity component of the rebounding
molecules is identical to the velocity of the plate that they hit. In time �t a patch
of size A of the plate is hit by j A�t molecules, where j = n〈v〉/4 is the average
molecular flux (Problem 13.3). Each molecule carries a momentum m1u from plate
to plate, where m1 is the mass of a single molecule and u is the relative velocity of
the plates. All collisions result in an impulse of the force of F�t = j Am1u�t so
that the shear stress is

F
A

= ρ〈v〉u
4

= pM

4RT
〈v〉u = pu

√
M√

2πNAkB T
.

Here we expressed the number density n in terms of the density ρ = nm1, which is
related to pressure by the ideal gas law ρ = pM/RT ; we also inserted the expression
for 〈v〉. The final numerical result is F/A = 1.43 × 10−6 N/m2. Like heat flux in a
rarefied gas (Problem 13.10) the shear stress too does not depend on the plate-to-plate
separation and is proportional to the pressure of the gas.

In a gas that is 104 times more dense, the mean free path 〈l f 〉 drops to ∼ 7.5 μm
and is hencemuch smaller than the separation of the plates d. Now the intermolecular
collisions are very frequent and an equilibrium velocity profile u(z) is established
between the plates, the velocity u being a linear function of the normal coordinate z.
Using similar arguments as in the analysis of the conduction of heat (Problem 13.10),
the flux of the linear momentum at a given z in the layer can be estimated by

F
A

= j
[
m1u(z + dz) − m1u(z − dz)

]
,

where j = n〈v〉/4 and dz ≈ 〈l f 〉. One can write u
(
z ± 〈l f 〉

) ≈ u(z) ± (du/dz)〈l f 〉
and thus
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F
A

= ρ〈l f 〉〈v〉
2

du

dz
≈ ρ〈l f 〉〈v〉u

2d
= u

πr21d

√
kB T M

8πNA

= 7.14 × 10−5 N/m2 .

Apart from the relations already used above we also inserted 〈l f 〉 = kB T/4πr21 p and
we assumed that the molecular radius is r1 = 2 × 10−10 m. We note that the shear
stress depends on the distance between the plates but not on pressure. In this regime
we can estimate the viscosity of the gas, which reads

η = F
A

d

u
= 1

πr21

√
kB T M

8πNA
= 2.14 × 10−5 Ns/m2 .

Problem 13.14.
A large container is filled with vaporized silver at 0.1 mbar and placed into an
evacuated chamber. A tiny circular hole with 0.01 mm2 cross section is drilled in
its wall. A circular plate 1 m in diameter is placed 1 m away from the hole so
that their symmetry axes coincide. Calculate the force exerted on the plate by the
escaping silver atoms, knowing that all atoms that hit the plate remain trapped on its
surface! What is the energy flux captured by the plate? The average speed of atoms
is 240 m/s.

If gravity is neglected, the velocity of the silver atoms remains unaltered after
the atoms pass through the hole. We denote the plate radius by R and the hole-
plate distance by d. All atoms with a velocity at polar angles θ smaller than θ0 =
arccos (d/

√
d2 + R2) (where θ is measured with respect to the symmetry axis of

the hole) will eventually hit the plate and contribute to the force. By using the same
notation as in Problems 13.2 and 13.3 and switching to spherical coordinates, the
impulse of the force imparted by a single atom upon collision is m1v cos θ, whereas
the impulse imparted by all atoms during a time interval �t reads

F�t = n Am1�t
∫ ∞

0
w(v)v4dv

∫ θ0

0
2π cos2 θ sin θ dθ

= n Am1�t

6
〈v2〉 (

1 − cos3 θ0
)
.

Now we use the equipartition theorem which states that m1〈v2〉/2 = 3kB T/2 and
the ideal gas equation of state p = nkB T to find that the force is equal to

F = p A

2

(
1 − cos3 θ0

) = 14.2 nN.

If the plate approaches the hole so that d → 0 and θ0 → π/2, the result isF = p A/2,
where the factor 1/2 is due to the fact that the atoms remain trapped on the plate rather
than bounce from it.
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Similarly, the kinetic energy carried by a single atom is m1v
2/2, whereas the total

energy captured by the plate during a time interval �t is given by

P�t = n Am1�t

2

∫ ∞

0
w(v)v5dv

∫ θ0

0
2π cos θ sin θ dθ

(see also Problem 13.10). Thus the energy flux is

P = p A

2
〈v〉 sin2 θ0 = 2.4 × 10−6 W.

Problem 13.15.
A two-dimensional monatomic ideal gas effuses from a vessel through a tiny opening
into vacuum. The flux of the escaping atoms is equal to 1018 m−1s−1. Calculate
the number density of the gas inside the vessel if the temperature is 300 K and the
kilomolar mass is 4 kg/kmol! What is the energy flux carried by the escaping atoms?

In polar coordinates, the distribution of the velocities of atoms is given by

w(v) = βm1

2π
exp

(
−βm1v

2

2

)
;

we also have dv = vdvdφ, where the angle φ is measured with respect to the hole
normal. We first calculate the average speed of the atoms

〈v〉 =
∫

vw(v) dv = βm1

2π

∫ ∞

0
exp

(
−βm1v

2

2

)
v2dv

∫ 2π

0
dφ

=
√

π

2βm1
.

Here the integral over the velocities was expressed in terms of the gamma function
�(3/2) = √

π/2. The number of atoms escaping in a time interval �t through an
opening of width l is

�N =
∫

nlv cosφ�t w(v)v dv dφ

and the corresponding flux of the atoms reads

j = 1

l

�N

�t
= n

∫ π/2

−π/2
cosφ dφ

∫ ∞

0
v2w(v) dv = n〈v〉

π
.

This result can be used to calculate the density of the gas n which is 3.2 × 1015 m−2.
In a similar manner, we can estimate the kinetic energy of atoms that pass through
the hole in a time interval �t :
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�E =
∫

nlv cosφ�t
m1v

2

2
w(v)v dv dφ.

Thus the energy flux reads

jQ = 1

l

�E

�t
= nm1

2

∫ π/2

−π/2
cosφ dφ

∫ ∞

0
v4w(v) dv = 3

2π
nkB T 〈v〉

= 3

2
kB T j .

Here the integral over the velocities involves �(5/2) = 3
√

π/4, and the final result
is jQ = 6.2 mW/m. Note that like in three dimensions, a simple estimate based on
the equipartition theorem gives a somewhat different result, namely kB T j .

Problem 13.16.
Use the statistical-mechanical description of the degenerate electron gas to calculate
the electric current emitted from a tungsten electrode of a surface area of 1 cm2

at 2500 K! The chemical potential and the work function of tungsten are 9 eV and
4.5 eV, respectively.

At absolute zero, the Fermi occupation number f (E) vanishes for all energy levels
above the chemical potential μ. At a finite temperature, however, f (E) is nonzero
albeit small even at energies exceeding μ + Ei , where Ei is the work function. In
other words, some of the electrons have enough energy to escape from the metal,
which is referred to as the thermionic emission. We use a coordinate system where
the z axis is perpendicular to the surface of the metal sample, and we denote the mass
of the electron by m and the components of the linear momentum of the electrons
by pi . The number of electrons that escape from a patch of a surface area of A in a
time interval �t reads

�N = 2
∫

Avz�t

h3
f (E)dpxdpydpz

= 2A�t

mh3

∫ ∞
√
2m(μ+Ei )

pzdpz

∫ ∞

−∞
dpx

∫ ∞

−∞
dpy f (E) .

The lower bound of the integral over the normal component of the momentum pz

ensures that only electrons that are fast enough actually leave the metal. After we
introduce p′2 = p2

x + p2
y and note that E = (p2

z + p′2)/2m, we find that the electron
flux is given by

j = 4π

mh3

∫ ∞
√
2m(μ+Ei )

pzdpz

×
∫ ∞

0

p′dp′

exp
(
β
[
(p2

z /2m) + (p′2/2m) − μ
]) + 1

= 4πkB T

h3

∫ ∞
√
2m(μ+Ei )

pzdpz ln
(
1 + exp

(
β(μ − p2

z /2m)
))

.
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In the relevant range of pz , the second term in the argument of the logarithm is much
smaller than unity and thus the logarithm can be expanded to first order. The final
result is

j = 4πm

h3
k2

B T 2 exp (−βEi ) = 4 × 1022 m−2s−1.

This corresponds to an electric current of I = je0 A = 0.65 A. As shown in Prob-
lem 5.20, thermionic emission can also be analyzed on purely thermodynamic
grounds, which leads to the same result—Richardson’s law.



Appendix A
Steam Tables

The indices l and v refer to liquid water and vapor, respectively.

T [◦C] p [bar] ρ−1
l [dm3/kg] ρ−1

v [m3/kg] hl [kJ/kg] hv [kJ/kg] Δh [kJ/kg] sl [kJ/kg K] sv [kJ/kg K]

0 0.006107 1.0002 206.29 0 2500.6 2500.6 0 9.1545
5 0.008719 1.0001 147.15 21.0 2510.0 2489.0 0.0764 9.0242
10 0.01227 1.0004 106.42 42.0 2519.2 2477.2 0.1511 8.8996
15 0.01704 1.0010 77.97 63.0 2528.4 2465.4 0.2245 8.7803
20 0.02337 1.0018 57.84 83.9 2537.6 2453.7 0.2964 8.6662
25 0.03166 1.0030 43.40 104.8 2546.7 2441.9 0.3671 8.5569
30 0.04242 1.0044 32.93 125.7 2555.7 2430.0 0.4366 8.4523
35 0.05622 1.0061 25.25 146.6 2564.7 2418.1 0.5050 8.3520
40 0.07375 1.0079 19.55 167.5 2573.7 2406.2 0.5722 8.2559
45 0.09582 1.0099 15.28 188.4 2582.6 2394.2 0.6384 8.1637
50 0.12335 1.0121 12.045 209.3 2591.5 2382.2 0.7036 8.0752
55 0.1574 1.0145 9.578 230.2 2600.3 2370.1 0.7678 7.9902
60 0.1992 1.0171 7.678 251.1 2609.0 2357.9 0.8311 7.9085
65 0.2501 1.0199 6.201 272.1 2617.7 2345.6 0.8934 7.8299
70 0.3116 1.0228 5.045 293.0 2626.3 2333.3 0.9549 7.7543
75 0.3855 1.0258 4.133 314.0 2634.8 2320.8 1.0155 7.6815
80 0.4736 1.029 3.408 335.0 2643.2 2308.2 1.0753 7.6114
85 0.5780 1.032 2.828 356.0 2651.6 2295.6 1.1344 7.5438
90 0.7011 1.036 2.361 377.0 2659.8 2282.8 1.1926 7.4785
95 0.8453 1.040 1.982 398.0 2667.9 2269.9 1.2501 7.4155
100 1.0133 1.043 1.673 419.1 2675.8 2256.7 1.3070 7.3546
105 1.208 1.047 1.419 440.2 2683.7 2243.5 1.3631 7.2957
110 1.433 1.052 1.210 461.4 2691.4 2230.0 1.4186 7.2387
115 1.691 1.056 1.036 482.5 2698.9 2216.4 1.4734 7.1834
120 1.985 1.060 0.8917 503.8 2706.3 2202.5 1.5277 7.1298
125 2.321 1.065 0.7704 525.0 2713.5 2188.5 1.5814 7.0779
130 2.701 1.070 0.6684 546.4 2720.5 2174.1 1.6345 7.0273

(continued)
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T [◦C] p [bar] ρ−1
l [dm3/kg] ρ−1

v [m3/kg] hl [kJ/kg] hv [kJ/kg] Δh [kJ/kg] sl [kJ/kg K] sv [kJ/kg K]

135 3.131 1.075 0.5820 567.7 2727.4 2159.7 1.6870 6.9782
140 3.614 1.080 0.5087 589.2 2734.0 2144.8 1.7391 6.9304
145 4.155 1.085 0.4461 610.6 2740.4 2129.8 1.7906 6.8838
150 4.760 1.091 0.3926 632.2 2746.6 2114.4 1.8417 6.8384
155 5.433 1.096 0.3465 653.8 2752.5 2098.7 1.8923 6.7940
160 6.180 1.102 0.3069 675.5 2758.2 2082.7 1.9425 6.7506
165 7.008 1.108 0.2725 697.3 2763.6 2066.3 1.9923 6.7082
170 7.920 1.114 0.2426 719.2 2768.7 2049.5 2.0417 6.6666
175 8.925 1.121 0.2166 741.1 2773.6 2032.5 2.0907 6.6258
180 10.027 1.128 0.1939 763.2 2778.1 2014.9 2.1394 6.5858
185 11.23 1.134 0.1739 785.3 2782.3 1997.0 2.1877 6.5464
190 12.55 1.142 0.1564 807.6 2786.2 1978.6 2.2356 6.5077
195 13.99 1.149 0.1409 829.9 2789.7 1959.8 2.2833 6.4695
200 15.55 1.157 0.1272 852.4 2792.9 1940.5 2.3307 6.4318
205 17.25 1.164 0.1151 875.0 2795.6 1920.6 2.3779 6.3945
210 19.08 1.173 0.10427 897.8 2798.0 1900.2 2.4247 6.3576
215 21.06 1.181 0.09465 920.7 2799.9 1879.2 2.4714 6.3211
220 23.20 1.190 0.08606 943.7 2801.5 1857.8 2.5179 6.2849
225 25.50 1.199 0.07837 966.9 2802.6 1835.7 2.5641 6.2490
230 27.98 1.209 0.07147 990.3 2803.3 1813.0 2.6103 6.2133
235 30.64 1.219 0.06527 1013.9 2803.4 1789.5 2.6562 6.1778
240 33.48 1.229 0.05967 1037.7 2803.1 1765.4 2.7021 6.1425
245 36.53 1.240 0.05463 1061.6 2802.3 1740.7 2.7479 6.1072
250 39.78 1.251 0.05006 1085.8 2800.9 1715.1 2.7936 6.0719
255 43.24 1.263 0.04592 1110.3 2799.0 1688.7 2.8392 6.0366
260 46.94 1.276 0.04215 1135.0 2796.5 1661.5 2.8849 6.0012
265 50.87 1.289 0.03872 1160.0 2793.3 1633.3 2.9306 5.9657
270 55.05 1.302 0.03560 1185.3 2789.5 1604.2 2.9764 5.9299
275 59.49 1.317 0.03275 1210.9 2784.9 1574.0 3.0223 5.8938
280 64.19 1.332 0.03013 1236.8 2779.6 1542.8 3.0683 5.8573
285 69.18 1.348 0.02774 1263.2 2773.4 1510.2 3.1145 5.8203
290 74.45 1.366 0.02554 1289.9 2766.4 1476.5 3.1610 5.7827
295 80.03 1.384 0.02351 1317.2 2758.4 1441.2 3.2078 5.7444
300 85.92 1.404 0.02164 1344.9 2749.3 1404.4 3.2549 5.7051
305 92.14 1.425 0.01992 1373.2 2739.0 1365.8 3.3026 5.6648
310 98.70 1.448 0.01832 1402.1 2727.3 1325.2 3.3508 5.6232
315 105.61 1.472 0.01683 1431.8 2714.2 1282.4 3.3996 5.5800
320 112.90 1.499 0.01545 1462.2 2699.7 1237.5 3.4493 5.5356
325 120.57 1.529 0.01417 1493.6 2683.6 1190.0 3.5001 5.4895
330 128.64 1.562 0.01297 1526.0 2665.5 1139.5 3.5520 5.4412
335 137.14 1.599 0.01184 1559.7 2645.2 1085.5 3.6054 5.3903
340 146.08 1.639 0.01078 1594.9 2622.1 1027.2 3.6606 5.3359
345 155.48 1.686 0.00977 1631.9 2595.4 963.5 3.7181 5.2769
350 165.37 1.741 0.00881 1671.2 2564.3 893.1 3.7788 5.2119
355 175.77 1.807 0.00787 1713.9 2527.0 813.1 3.8441 5.1386
360 186.74 1.894 0.00694 1761.5 2481.1 719.6 3.9164 5.0529
365 198.29 2.016 0.00599 1817.6 2420.9 603.3 4.0010 4.9465
370 210.52 2.225 0.00493 1892.4 2330.8 438.4 4.1137 4.7953
374.15 221.29 3.1 0.0031 2084.0 2084.0 0 4.4062 4.4062



Appendix B
Metropolis Algorithm

In virtually all problems of statistical physics, one must evaluate the partition func-
tion of the system considered. As seen in the previous chapters, this can be done
exactly in some cases; in others, one has to resort to suitable approximations. Unfor-
tunately, such an approximation does not exist in all cases or may be inconsistent or
untractable so that an entirely different approach is required. It is easy to see that a
direct numerical evaluation of the canonical partition function

exp (−βF) ∝
∫

�

exp
(−βE(u)

)
du

where the vector u denotes a multi-particle state in the phase space, is not a viable
option. The phase space � is simply too large for such an integration to be feasible,
and by carrying it out, most of the computing time would be spent in the regions of
the phase space where the statistical weight exp

(−βE(u)
)
is negligibly small.

However, there is a way around this problem. Usually one is not interested in the
partition function as such but rather in an equilibrium average of a given quantity

〈A〉 =
∫
�
A(u) exp

(−βE(u)
)
du∫

�
exp

(−βE(u)
)
du

which actually corresponds to a ratio of two non-computable integrals. In other
words: When computing averages, it is sufficient to know the relative probabilities
of occurrence within a limited set of selected states u. When selecting these states,
it is advisable to cover those regions of the phase space where the statistical weight
is onnegligible. By increasing the number of selected states, the estimate of the ave-
rage 〈A〉 is improved. These ideas are the basis of the so-calledMetropolis algorithm
sketched below.

Suppose that one can generate a representative set of L sample points u in the
phase space in such a way that their density is proportional to the probability density
ρ(u) ∝ exp

( − βE(u)
)
. Then 〈A〉 is obtained by simply averaging the quantity A

over the selected L points. There is no need that all of these points be generated at
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282 Appendix B: Metropolis Algorithm

once; instead, one can invent a suitable trajectory through phase space that visits the
points one after another.

We start building the trajectory at a point u′ called “old” (o) and randomly select
another pointu called “new” (n). The o → nmove can be a translation and/or rotation
of a molecule (or a molecular cluster), a spin-flip, particle insertion/removal, etc.
The probability that the move o → n be executed π(o → n) is a product of the
probability that the move be proposed α(o → n) and the probability that the move
be accepted σ(o → n). This scheme of generating new points has to be ergodic: It
must ensure that all parts of the phase space are reachable within a finite number of
steps. In equilibrium, the statistical weights ρ(o) and ρ(n) of states o and n differ. For
ρ(n) > ρ(o) (i.e., the new state ismore probable than the old one), the o → nmove is
accepted unconditionally; otherwise, this is done with a probability P < 1. Its value
is determined by requiring that, in an already equilibrated system, further transitions
between states must not ruin the existing equilibrium: The numbers of implemented
transitions o → n and n → o must be the same. This can be formulated in terms
of the so-called detailed balance condition: ρ(o)π(o → n) = ρ(n)π(n → o). By
assuming that α(o → n) = α(n → o), we can recast this condition in case of the
canonical distribution as

σ(o → n)

σ (n → o)
= ρ(n)

ρ(o)
= exp

( − β[E(n) − E(o)]).

From here, it immediately follows that

P = exp
( − β[E(n) − E(o)]).

After a proposed new state is either accepted and relabeled ”old” or rejected, the entire
procedure is repeated, thereby gradually building the entire trajectory. The density
of the thus generated points of the phase space L is proportional to exp

(−βE(u)
)
.

In each step, the quantity of interest A has to be computed and added to the ave-
rage. This has to be done even if the o → n move has been rejected. In cases where
the trajectory starts from a nonequilibrium state, the accumulation of averages must
be postponed until the system reaches equilibrium. The approach to equilibrium can
be monitored by plotting the behavior of the energy or another suitable variable.
The fraction of the rejected moves can be controlled by dynamically adjusting the
amplitude of the trial moves o → n; an efficient sampling of the phase space typ-
ically requires a move acceptance ratio of around one half. Such an evaluation of
thermodynamic averages is called a Monte Carlo simulation.

The above algorithm can be applied for average calculations even if the ρ(u)

distribution is not canonical—a generalization of the above acceptance criterion
to other distributions is straightforward. In the isothermal–isobaric ensemble, for
example, the distribution derived in Problem 8.5 should be used.

The above Metropolis algorithm can also serve as a rather general and robust
tool for the numerical minimization of functions. If we employ, e.g., the canonical
distribution as the probability density, the minimized quantity is the energy of the
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system. The moves that increase the energy ensure that the minimization trajectory
does not get stuck in the localminima.Bygradually cooling the system,we eventually
find the global energy minimum. This approach is known as simulated annealing.
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Index

A
Absolute activity, 243, 244, 251, 252
Absorption coefficient, 103, 110
Accommodation, 268, 272
Adiabat, 27–31, 34, 36, 43–45, 48, 53
Adiabatic process, 38, 40–42, 44, 48, 52, 53,

228, 271
Adsorption center, 248–250, 252–255
Alkane chain, 128
Anchoring, 168
Anharmonic

oscillator, 130
potential, 131, 197

B
Binary fluid, 94
Binary mixture, 97, 98, 257
Blackbody radiation, 52, 53, 226
Bohr magneton, 9, 208, 210, 231, 241
Bohr–Sommerfeld rule, 235
Boiling point, 91, 96–98, 104

diagram, 94–96
elevation, 86, 87

Bose–Einstein
condensation, 245, 247, 248
distribution, 243

Boson gas, 237, 243–245
Bubble-point curve, 94–97

C
Callendar equation of state, 55
Capacitor, 56
Carnot heat engine, 30–32, 36
Cell approximation, 174, 175
Chain polymerization, 187

Chemical constant, 83, 248, 250, 253
Clausius–Clapeyron equation, 7, 20, 43, 61,

62, 64, 65, 67, 69, 82, 100, 101, 106
Clausius–Mossotti relation, 39, 40, 138
Compressibility

adiabatic, 52, 53, 58, 69, 70, 228
isothermal, 4, 5, 7, 37, 39, 40, 46–49, 51–
53, 58, 70, 160, 161, 178, 227, 229, 230

negative, 4
Concentration cell, 102
Configuration integral, 150, 153, 159
Contact potential, 108, 109
Continuous phase transition, 28, 80, 216
Coordination number, 207–209
Correlation hole, 163, 164
Correlation length, 75, 76
Critical

exponent, 69, 70, 72, 75, 139–142, 208
isotherm, 6
magnetic field, 77, 80–82
point, 6, 62, 67, 69, 74, 216, 217, 256,
257

pressure, 3, 6, 41, 54, 67, 69, 154, 155
temperature, 3, 6, 28, 41, 54, 67, 68, 71,
75, 77, 154, 155, 183, 210

volume, 3, 6, 54, 67, 69, 154, 155
Curie law, 8, 9, 20, 22, 81, 136, 205
Curie–Weiss law, 71
Cycle, 25, 27–31, 34, 35

D
Dalton’s law, 7
Daniell cell, 102
De Broglie wavelength, 243, 252
Debye

model, 219–221
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temperature, 220
Debye–Hückel approximation, 164, 165
Decimation, 215, 216
Degeneracy, 199, 202–204, 235, 237, 243,

251
Dendrimer, 160
Deoxyribonucleic acid, 192
Depletion interaction, 169, 171–174
Detailed balance, 280
Dewar flask, 110, 268
Dew-point curve, 94–97
Diatomic

gas, 30, 41, 255, 269, 271
molecule, 131

Dielectric constant, see relative permittivity
Dieterici equation of state

first, 6, 54, 55
second, 53, 54

Diode, 83
Discontinuous phase transition, 75, 77
Dispersion relation, 219, 223–225, 227
Dissociation energy, 90, 91
Distillation, 96
DNA, 192
Doppler effect, 271
Dulong–Petit law, 197, 220

E
Efficiency, 28–32, 35, 36
Einstein model, 196, 221, 255
Elastocaloric effect, 59, 186
Electric dipole, 8, 9, 55, 56, 135–138, 142,

143, 146–148, 207, 209
Electric polarization, 8, 9, 135, 138, 148
Electric susceptibility, 136
Electron gas, 83, 229–231, 233–237, 240,

267, 275, see also Fermi gas
Electrostatic pressure, 49, 94
Enthalpy of reaction, 91, 101
Equation of state, 8–10, 12, 13, 15, 21, 40,

52, 54, 56, 62, 138, 139, 149
black-body radiation, 53
boson gas, 244
Callendar, 55
fermion gas, 244
first Dieterici, 6, 54, 55
hard sphere, 156, 163
ideal gas, 9, 11, 62, 84, 85, 89, 91, 100,
107, 120–122, 136, 151, 160, 166, 239,
262, 263, 269, 271, 272, 274

non-ideal gas, 149, 152
one-dimensional gas, 156

plasma, 164
second Dieterici, 53, 54
square well, 156
two-dimensional gas, 239
van der Waals, 3, 4, 6, 40–42, 54, 66, 67,
69, 153–155, 157

virial, 40, 41, 151, 152, 154, 155, 161
Equipartition theorem, 116, 118, 132, 204,

262, 269, 274, 275
Eutectic, 99
Exchange integral, 182, 207, 215–217, 257
Excluded volume, 167, 168, 172, 176, 177

F
Fermi

energy, 230, 231, 236
gas, 229, 230, see also electron gas
level, 108

Fermi–Dirac distribution, 243, 248
Fermion gas, 244, 245
Ferroelectric–paraelectric transition, 138–

142, 210
Ferromagnet, 9, 208, 209, 211, 219, 256
Ferromagnetic–paramagnetic transition, 10,

70–72, 207, 209, 214, 216, 217
First-order phase transition, see discontinu-

ous phase transition
Fixed point, 216
Flory theory, 191
Fog, 7
Freely jointed chain, 127, 128, 132, 148, 149,

188, 190, 191

G
Galvanic cell, 38, 101, 102
Galvanic potential, see contact potential
Gas

boson, 237, 243–245
diatomic, 30, 41, 255, 269, 271
electron, 83, 229–231, 233–237, 240,
275

Fermi, 229, 230
fermion, 244, 245
ideal, 5, 7, 9, 12, 24, 30, 34, 43, 46, 47, 50,
59, 83, 85, 88, 89, 100, 107, 118, 120–
122, 136, 148, 151, 153, 156, 159–161,
166, 241, 243, 244, 251, 253, 259, 274

lattice, 256, 257
monatomic, 30, 115, 117, 119, 149, 153,
155, 249, 254, 274

non-ideal, 40, 46, 59, 149, 152–154, 185
perfect, see ideal gas
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photon, 35, 36, 227, 228
two-dimensional, 58, 228, 231, 236–238,
251, 267, 274

van der Waals, 5, 41, 42, 55
Gauss law, 49, 165
Gay–Lussac law, 13
Gyromagnetic ratio, 205, 231, 241

H
Hard

disk, 174–176
rod, 170, 171, 176
sphere, 152, 154, 156, 157, 160, 161, 163,
164, 168, 171, 173, 176

spherocylinder, 167
Harmonic oscillator, 195, 196, 198, 219
Heat

of fusion, 23, 24, 61, 63–66, 84, 100, 105,
269

of vaporization, 7, 20, 24, 61, 62, 64, 66–
69, 84, 87, 91, 96, 98–100

Heat capacity, 12
at constant charge, 38
at constant surface area, 44, 58
at constant voltage, 38
conformational, 124, 125
difference, 7, 38, 39, 45, 46, 58, 69, 140,
160

electric, 137, 207
magnetic, 206, 207, 210
magnon, 219
phonon, 220, 225
ratio, 20, 28, 259
roton, 224

Heat engine, 26–29, 31, 35, 109
Carnot, 30–32
cycle, 27–31, 34, 35
efficiency, 28–32, 35, 36
steam, 31, 32

Heat pump, 25, 28
Henry’s law, 101
Hirn experiment, 39, 154
Hooke’s law, 132, 146, 148, 149
Humidity, 49–51

I
Ideal

mixture, 92, 96, 97
solution, 86, 91, 92, 94, 95, 101

Ideal gas, 5, 7, 9, 12, 24, 30, 34, 43, 46, 47,
50, 59, 83, 88, 89, 118, 121, 136, 148,

153, 156, 159–161, 166, 241, 243,
244, 251, 253, 259

Ideal gas law, 9, 11, 62, 84, 85, 89, 91, 100,
107, 120–122, 136, 151, 160, 166,
239, 252, 262, 263, 269, 272, 274

Inversion
curve, 54
point, 53
temperature, 41, 54, 55

Ionization energy, 89
Ising model, 182, 207, 209–211, 214, 217,

256, 257
Isobar, 28, 29, 34–36
Isochore, 34, 35
Isotherm, 4–7, 27, 31, 34–37, 158

Dieterici, 7
subcritical, 4
van der Waals, 6, 7

Isotope separation, 266

J
Joule heating, 105, 106
Joule–Kelvin (Joule–Thomson) process, 40,

41, 53, 153

K
Keratin, 144
Kinetic theory of gases, 83
Kirchhoff

formula, 83
law, 108

L
Landau theory, 70–74, 139, 140, 142
Langevin

chain, 128
function, 136, 138

Laplace law, 49, 50
Latent heat, 28, 64, 77, 78, 80–82
Lattice gas, 256, 257
Lattice model, 184
Lennard-Jones potential, 130, 131
Liquid crystal, 75, 76, 167, 176

elastomer, 59
Liquid-gas

coexistence, 4, 62, 67, 69
phase transition, 158
transition, 61, 64, 66

Liquid–solid transition, 61, 64
Liquidus curve, 99
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M
Magnetic dipole, 9, 205–209, 231, 257
Magnetic susceptibility, 9, 10, 20, 71, 72
Magnetization, 9, 10, 21, 48, 70–75, 77, 205,

206, 208–210, 257
Magnon, 219, 220
Maxwell

double-tangent construction, 178
relation, 37–39, 43–46, 48, 82
rule, 4, 66

Mean-field approximation, 69, 138–142,
164, 207–209, 256, 257

Mean free path, 259, 264, 266, 268–270,
272, 273

Melting point, 62, 100, 101, 104, 106
depression, 86, 87

Monatomic gas, 30, 153, 155, 249, 250, 254
Morse potential, 197

N
Negative temperature, 181
Nematic

liquid crystal, 75, 76, 176
order parameter, 122–124

Nematic-isotropic transition, 75, 176, 177
Nernst equation, 102
Neutron star, 231
Nonideal gas, 40, 46, 59, 153, 154, 185
Normal–superconductor transition, 28, 77–

79, 81
Nuclear magnetic relaxation, 181
Nuclear reactor, 260

O
Onsager

reciprocal relations, 109, 110
theory of nematic-isotropic transition,
178

Orthohydrogen, 201–203
Osmotic pressure, 86, 93

P
Packing fraction, 176
Pair correlation function, see radial distribu-

tion function
Parahydrogen, 201, 202
Paramagnet, 208
Partial pressure, 86, 88, 90, 100, 101
Pauli

exclusion principle, 241
paramagnetism, 232

Peltier effect, 108, 109
Perfect gas, see ideal gas
Permittivity, see relative permittivity
Persistence length, 126–128, 218
Phase transition

Bose–Einstein condensate, 247
continuous, 28, 80, 216
discontinuous, 75, 77
ferroelectric-paraelectric, 138–142, 210
ferromagnetic-paramagnetic, 10, 70–72,
207, 209, 214, 216, 217

liquid-gas, 61, 64, 66, 158
liquid–solid, 61, 64
nematic-isotropic, 75, 176, 177
normal–superconductor, 28, 77–79, 81
re-entrant, 65

Phonon, 220, 225
Photon, 226, 227

gas, 35, 36, 227, 228
Planck’s law, 228
Plasma, 46, 164–166
Polymer chain, 124–126, 128, 132, 133,

146–148, 183, 186, 187, 190, 211,
218

Polytropic process, 34, 35
Porous glass, 251
Potential well, 199, 240
pV diagram, 29–31

R
Radial distribution function, 158–164
Raoult’s law, 92
Reaction enthalpy, 91, 101
Redox reaction, 101, 102
Re-entrant transition, 65
Refrigerator, 26, 29, 30
Relative permittivity, 8, 39, 56, 57, 93, 94,

137
Renormalization group, 214, 216
Reynolds number, 104
Richardson’s law, 84, 276
Rotator, 199, 201, 203, 204
Roton, 224
Rubber, 8, 59, 188

S
Saturated vapor pressure, 7, 8, 19, 20, 24,

49, 50, 61–63, 66, 68, 91–93, 99, 100,
106, 107, 136

Schottky defect, 178, 179
Screening, 164
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Second-order phase transition, see continu-
ous phase transition

Seebeck effect, 108
Semipermeable membrane, 86
Short circuit, 38, 39
Soap film, 43, 44
Soft sphere, 172
Solar photosphere, 89, 90
Sommerfeld expansion, 231, 235
Specific heat capacity, see heat capacity
Spin isomer, 201–203
Spinor, 210
Spin wave, see magnon
Square-shoulder, 155
Square well, 154, 156, 157
Steam engine, 31, 32
Stefan–Boltzmann law, 110
Stimulated emission, 181
Superconductor, 28, 77, 78, 80
Supercooling temperature, 75, 76
Superfluid helium, 224
Superheating temperature, 4, 73, 75, 76
Surface tension, 43, 49, 93, 94, 106, 228, 238
Susceptibility

electric, 8, 135, 138–141
magnetic, 9, 10, 20, 71, 72, 81, 205

T
Thermal conductivity, 103–106
Thermal expansion coefficient, 5, 8, 32, 37,

40, 42, 45, 46, 48, 49, 52, 57–59, 62,
130, 148, 153, 154, 160

Thermionic emission, 84, 275, 276
Thermocouple, 108
Thermodiffusion, 108, 109
Thermoelectric effect, 266
Thermomechanical effect, 266
Thomson effect, 108
Tobacco mosaic virus, 123, 124, 170
Tonks gas, 156, 161

Transfer matrix, 210, 212
Transport coefficient, 109
Triple point, 61, 62, 84

U
U tube, 86

V
Van der Waals

attraction, 152
equation of state, 3–7, 40–42, 54, 66, 67,
69, 153–155, 157

fluid, 4, 66–69
gas, 5, 41, 42, 55, 68
isotherm, 4–7
liquid, 4

Van Hove theorem, 158, 217
Virial

coefficient, 41, 150–152, 155, 161, 164,
185

equation of state, 40, 41, 151, 152, 154,
155, 161

expansion, 151, 155–157, 164
Virtual work, 94
Viscosity, 273
Voronoi tessellation, 174

W
White dwarf, 233, 234
Wien’s displacement law, 228
Work function, 83, 275

Y
Young–Laplace law, see Laplace law
Young modulus, 8, 45, 148, 149, 188, 190,

220, 230
Yukawa potential, 165
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